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ImageNet Classification (top-5 accuracy)
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Shallow Methods Deep Convolutional Neural Networks
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Better Results à More Complexity
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Many applications require real-time inferencing



Model Compression and Acceleration

MobileNet V3 [Howard et al, 2019]

§ Low-rank factorization, Knowledge Distillation, Pruning, Quantization, Neural Architecture Search, etc.

ProxylessNAS [Cai et al, 2019]

EfficientNet [Tan & Le, 2019]



Most methods rely on one-size-fits-all networks that require the same fixed set 
of features to be extracted for all inputs, no matter their complexity



This talk: Dynamic (Adaptive) Neural Networks for 
Efficient Image and Video Classification
§ Networks models that are dynamically reconfigured depending on the input 

§ Conditional Computation [Bengio et al, 2013/2016]



Feed-Forward Convolutional  Neural Networks

Adapted from Veit et al



Feed-Forward Convolutional  Neural Networks

What happens when we delete a step?
Adapted from Veit et al



Feed-Forward Convolutional  Neural Networks

Adapted from Veit et al



What happens if we delete a layer at test time?

Adapted from Veit et al

CIFAR-10



What happens if we delete a layer at test time?

Adapted from Veit et al

CIFAR-10



Adapted from Veit et al

Why does this happen?



Adapted from Veit et al

Why does this happen?



Adapted from Veit et al

Deletion of a Layer



Adapted from Veit et al

Deletion of a Layer

All paths are affected

Only half of the paths are affected



Adapted from Veit et al

Can we delete a sequence of layers without performance drop?
This experiment [Veit et al, 2016]:
§ Layers were dropped randomly
§ Global dropping strategy for all images



BlockDrop: Dynamic Inference Paths in 
Residual Networks

Zuxuan Wu*, Tushar Nagarajan*, Abhishek Kumar, Steven Rennie, 
Larry S. Davis, Kristen Grauman, Rogerio Feris

* Authors contributed equally

CVPR 2018



Dog

Do we really need to run 100+ layers / residual blocks of a neural 
network if we have an “easy” input image?

[Wu & Nagarajan et al, CVPR 2018]

BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]



Dog

(Veit et al., NIPS 16)

“Dropping some blocks during testing 
doesn’t hurt performance much”
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[Wu & Nagarajan et al, CVPR 2018]

BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]
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How to determine which blocks to drop depending on the input image?

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]
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Canonical, front-facing pups? Use 8 blocks“Predict which blocks to drop conditioned on the input 
image, in one shot, without compromising accuracy”

Our Idea: BlockDrop

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks [CVPR 2018]

Policy Network Training through Reinforcement Learning

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks 

Results on ImageNet:

20% - 36% computational 
savings (FLOPs)

Complementary to other 
model compression 
techniques

[Wu & Nagarajan et al, CVPR 2018]



SpotTune: Transfer Learning through 
Adaptive Fine-Tuning

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, 
Tajana Rosing,  Rogerio Feris

CVPR 2019



[Guo et al, CVPR 2019]

Data Efficiency: Transfer Learning
§ Fine-tuning is arguably the most widely used approach for transfer 

learning

§ Existing methods are ad-hoc in terms of determining where to fine-
tune in a deep neural network (e.g., fine-tuning last k layers)

§ We propose SpotTune, a method that automatically decides, per 
training example, which layers of a pre-trained model should have 
their parameters frozen (shared with the source domain) or fine-
tuned (adapted to the target domain)



[Guo et al, CVPR 2019]



SpotTune: Transfer Learning through Adaptive Fine-Tuning

[Guo et al, CVPR 2019]



SpotTune automatically 
identifies the right fine-
tuning policy for each 

dataset, for each training 
example. 

SpotTune: Transfer Learning through Adaptive Fine-Tuning

[Guo et al, CVPR 2019]

Fine-Tuning Policy Visualization



[Guo et al, CVPR 2019]

SpotTune: Transfer Learning through Adaptive Fine-Tuning

SpotTune sets the new state of the art on the Visual Decathlon Challenge



AdaShare: Learning What to Share for 
Efficient Multi-Task Learning 

Ximeng Sun, Rameswar Panda, Rogerio Feris, Kate Saenko

NeurIPS 2020



Hard Parameter Sharing

Task 1 Task 2 Task 3

Shared 
Layers

Task-Specific 
Layers

§ Hand-designed architectures  composed of base layers that are shared across tasks and 
specialized branches that learn task-specific features. 

§ Performance depends on 
“where to branch” in the 
network [Misra et al, 2016]

§ The space of possible 
branching architectures is 
combinatorially large ! 



Soft Parameter Sharing

Task 1

§ Network column for each task and a mechanism for feature sharing between columns.

Task 2 Task 3

Number of parameters grow linearly with the number of tasks !



Problem

Can we determine which layers in the network should be shared 
across which tasks and which layers should be task-specific to 
achieve the best accuracy/memory footprint trade-off for scalable 
and efficient multi-task learning?



§ Single network that supports separate execution paths for different tasks

Proposed Approach: AdaShare

Task 1-Specific Task 2-Specific Shared Skipped

Task 1

Task 2



AdaShare: Learning what to Share in Multi-Task Learning



AdaShare: Learning what to Share in Multi-Task Learning



AdaShare: Experimental Results
§ CityScapes [2 tasks].  AdaShare achieves the best performance on 5 out of 7 

metrics using less than 1/2 parameters of most baselines. 



AdaShare: Experimental Results
§ NYU v2 [3 tasks]. AdaShare achieves the best performance on 10 out of 12 

metrics using less than 1/3 parameters of most baselines. 



AdaShare: Experimental Results
§ Tiny-Taskonomy [5 Tasks]. AdaShare outperforms the baselines on 3 out of 5 tasks 

using less than 1/5 parameters of most baselines.  



Dynamic Neural Networks for 
Video Classification

MIT: Bowen Pan, Camilo Fosco, Alex Andonian, Aude Oliva

BU & IBM: Ximeng Sun and Kate Saenko

IBM: Yue Meng, Rameswar Panda, Chung-Ching Lin, Richard Chen, Quanfu Fan,  
Prasanna Sattigeri, Leonid Karlinsky, Rogerio Feris



AR-Net: Adaptive frame resolution for efficient action 
recognition [ECCV 2020]
§ Key idea is to select the resolution of each frame on-the-fly to achieve the best 

accuracy/efficiency trade-off in video classification



AR-Net: Experimental Results

ActivityNet dataset



AdaMML: Adaptive multimodal learning for efficient video 
recognition
§ Key idea is to select on-the-fly the optimal modalities for each video segment 

conditioned on the input for efficient video recognition



Action: Playing Accordion

RGB+Flow+Audio Performance on Kinetics-Sounds dataset

AdaMML: Experimental Results



Summary
§ Adaptive (dynamic) neural networks for efficient image and video classification

BlockDrop SpotTune Adashare

AdaMML AR-Net
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