# Dynamic Neural Networks for Efficient Image and Video Classification

#### **Rogerio Schmidt Feris**

MIT-IBM Watson AI Lab http://rogerioferis.com

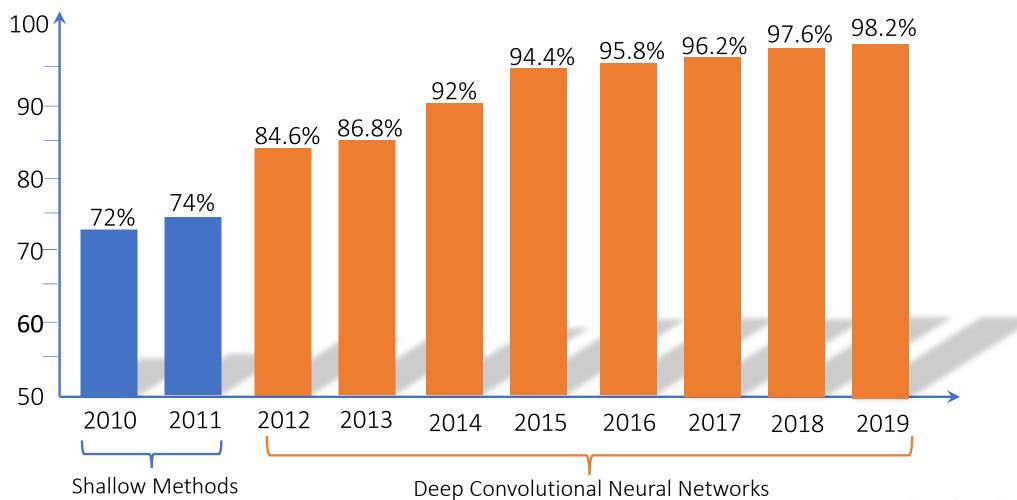
LatinX in AI Research at ICML 2020





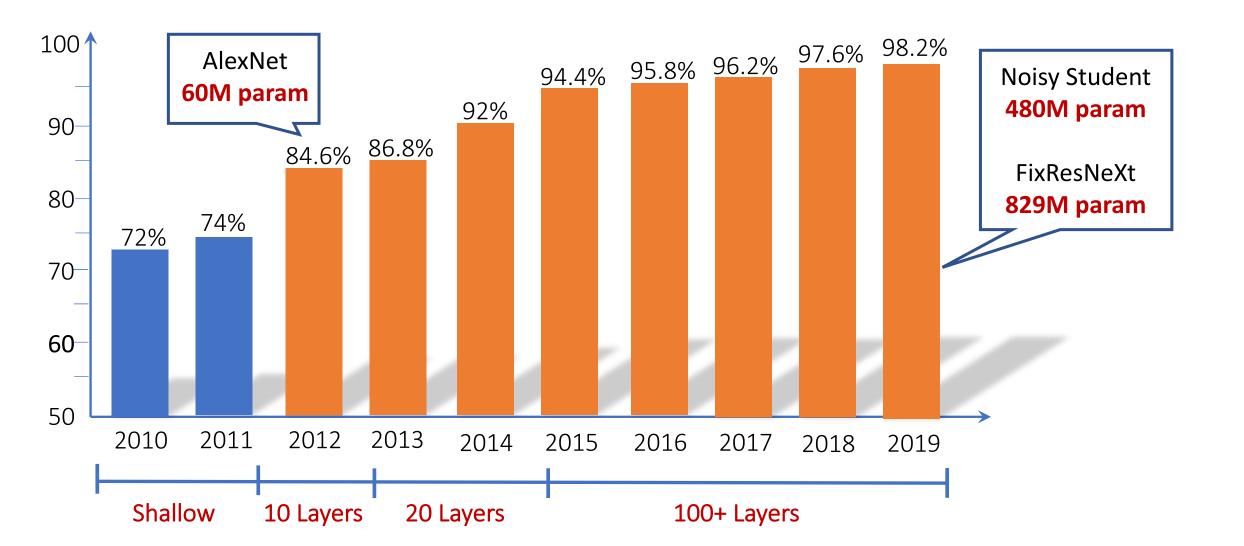


## ImageNet Classification (top-5 accuracy)



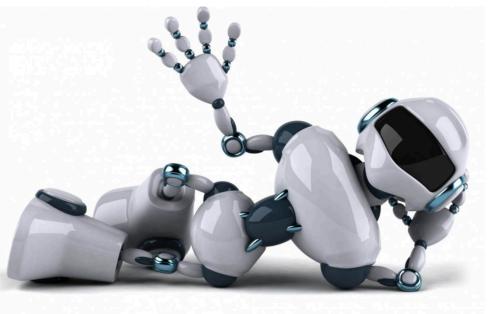
Numbers from http://paperswithcode.com

## Better Results $\rightarrow$ More Complexity



# Many applications require real-time inferencing



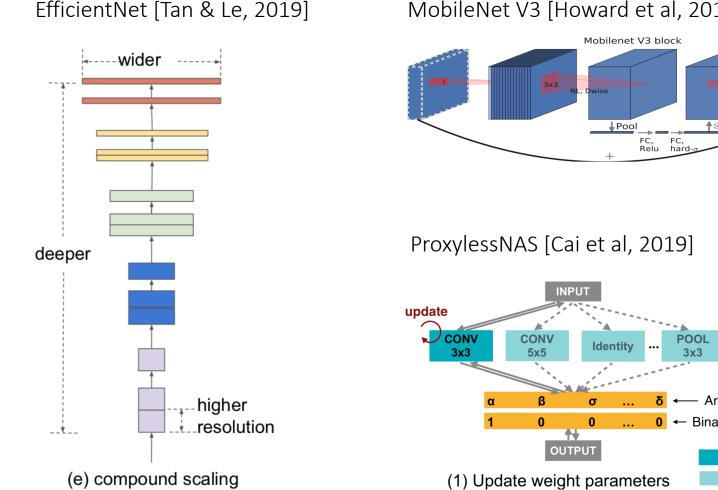




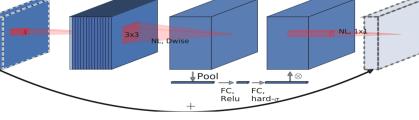


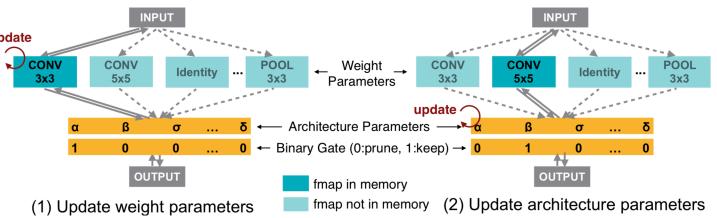
# Model Compression and Acceleration

Low-rank factorization, Knowledge Distillation, Pruning, Quantization, Neural Architecture Search, etc. 



#### MobileNet V3 [Howard et al, 2019]



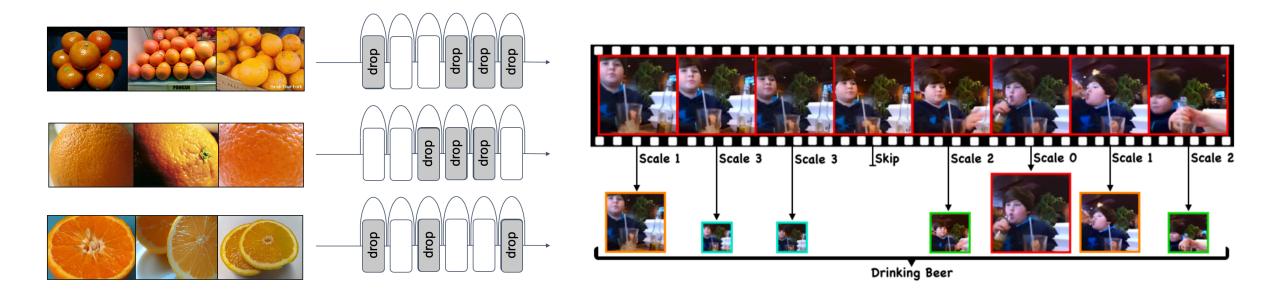


Most methods rely on one-size-fits-all networks that require the same fixed set of features to be extracted for all inputs, no matter their complexity



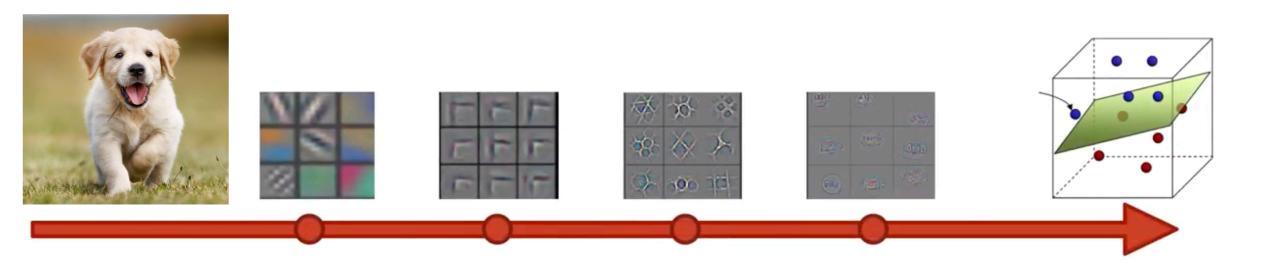
# This talk: Dynamic (Adaptive) Neural Networks for Efficient Image and Video Classification

Networks models that are dynamically reconfigured depending on the input

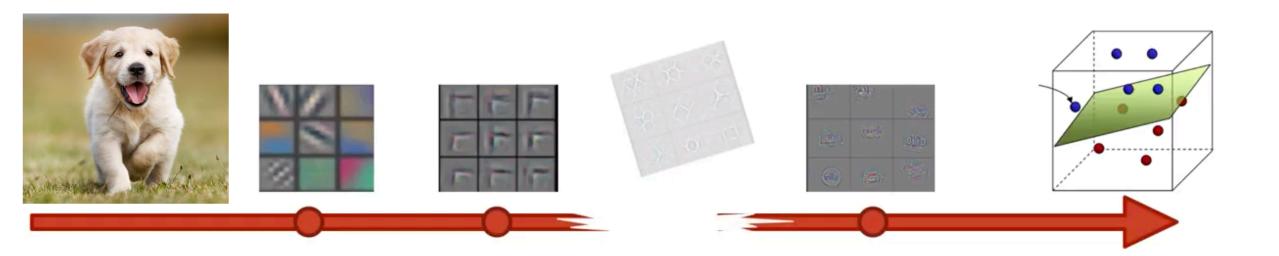


Conditional Computation [Bengio et al, 2013/2016]

## Feed-Forward Convolutional Neural Networks



## Feed-Forward Convolutional Neural Networks

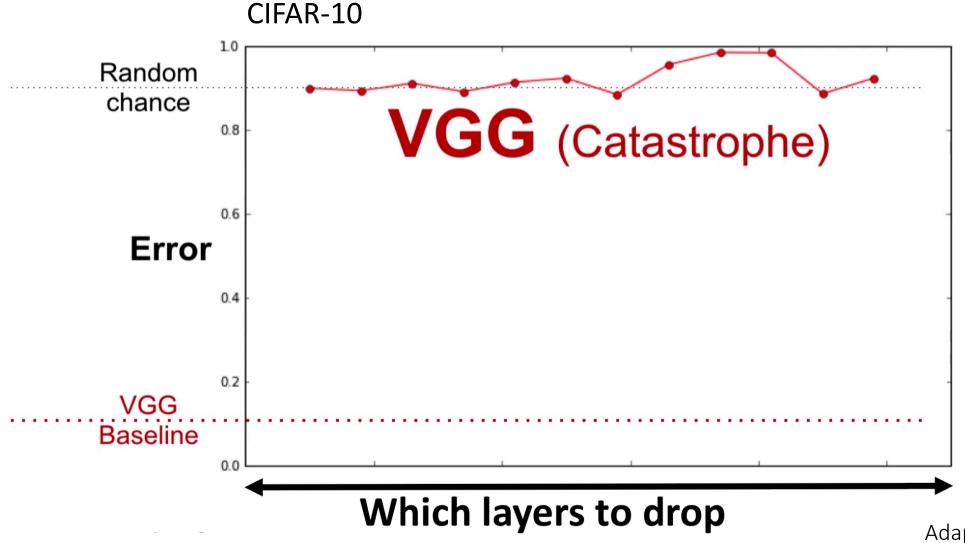


#### What happens when we delete a step?

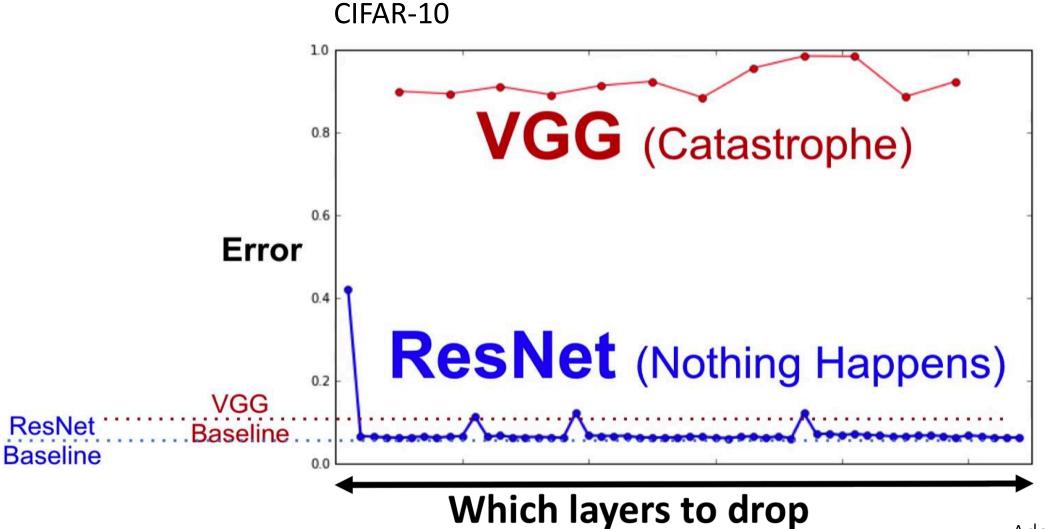
#### Feed-Forward Convolutional Neural Networks



# What happens if we delete a layer at test time?



# What happens if we delete a layer at test time?



# Why does this happen?

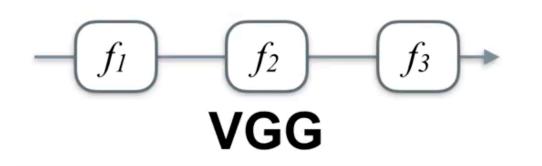


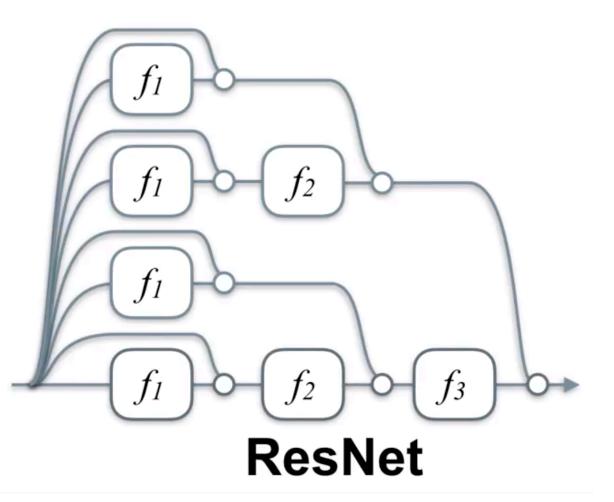
VGG

ResNet

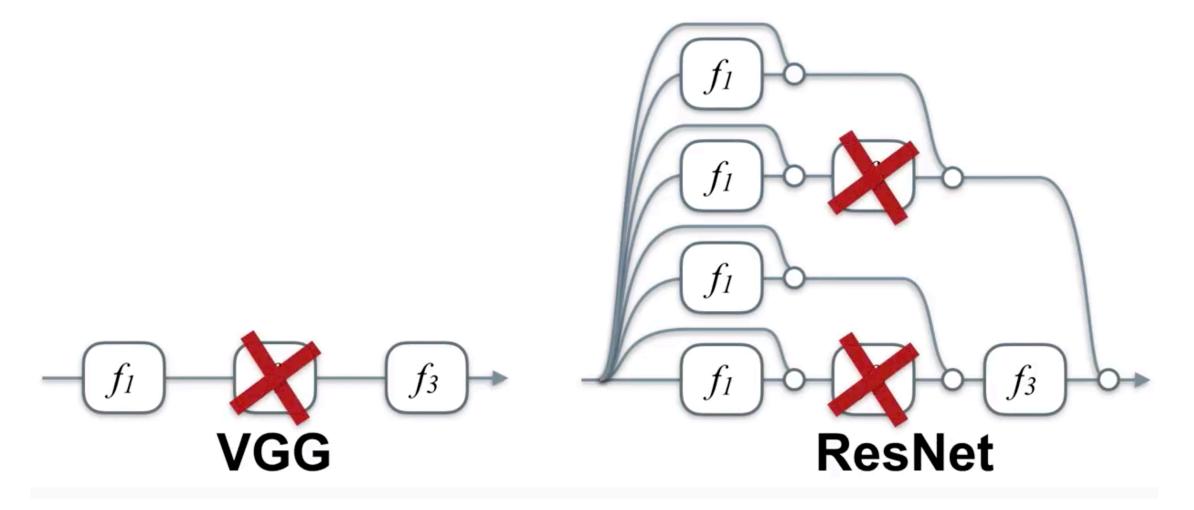
# Why does this happen?

The unraveled view is equivalent and showcases the many paths in ResNet.



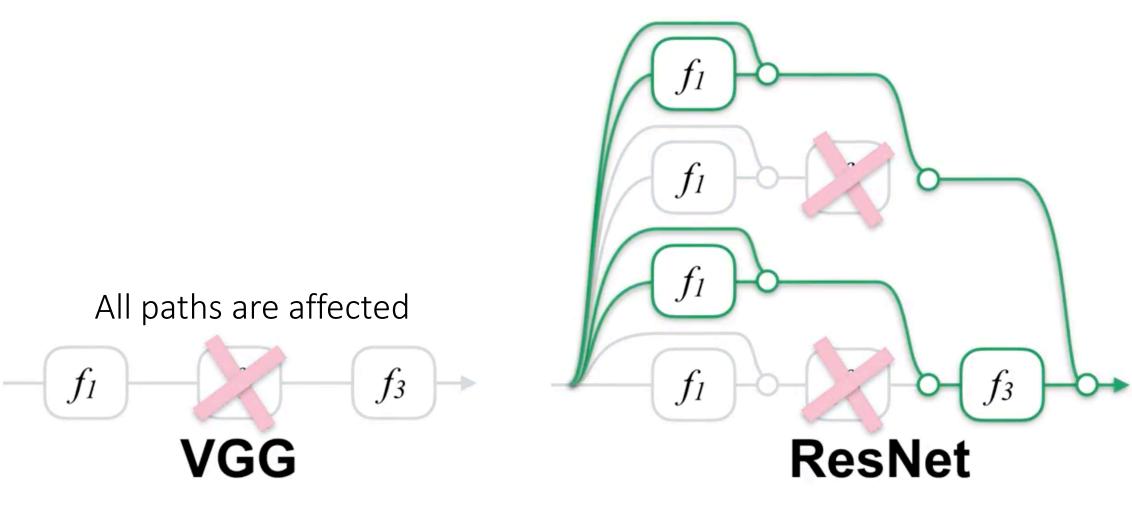


# Deletion of a Layer

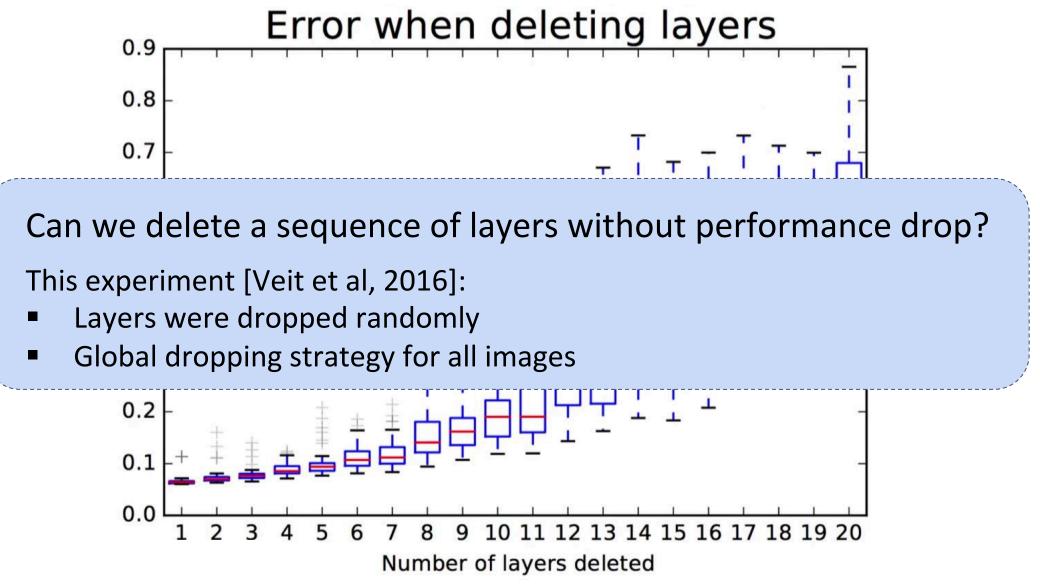


# Deletion of a Layer

#### Only half of the paths are affected



#### Performance varies smoothly when deleting **several** layers.

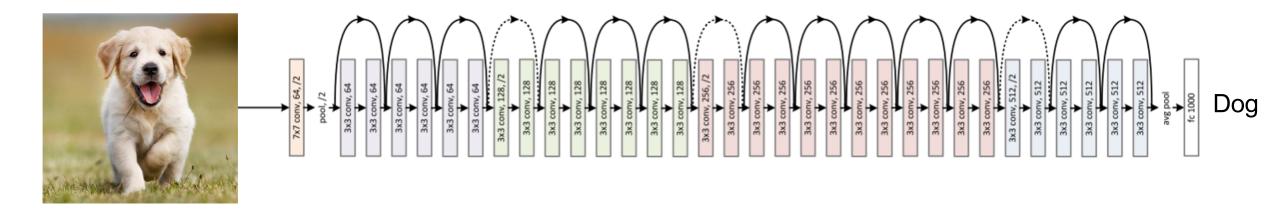


# BlockDrop: Dynamic Inference Paths in Residual Networks

Zuxuan Wu\*, Tushar Nagarajan\*, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman, Rogerio Feris

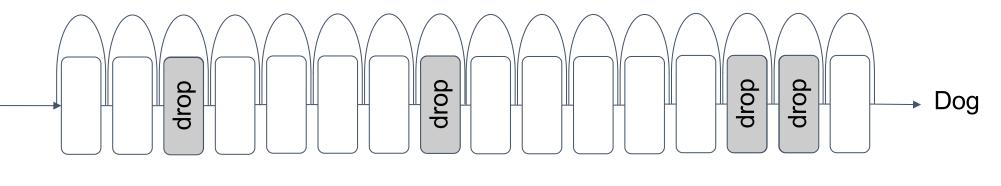
## CVPR 2018

\* Authors contributed equally



Do we really need to run 100+ layers / residual blocks of a neural network if we have an "easy" input image?

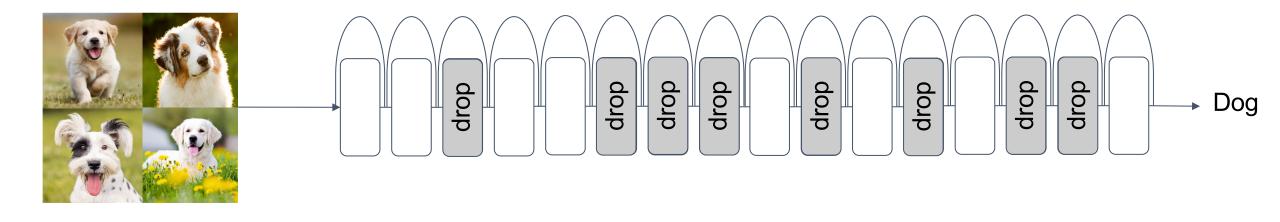




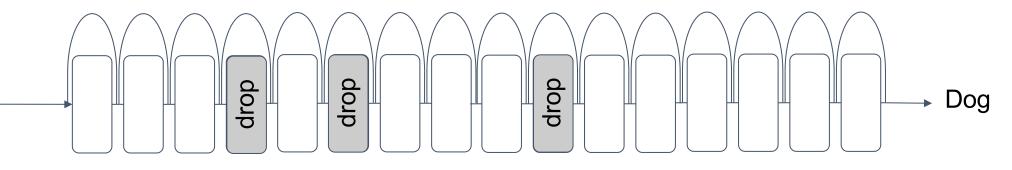
"Dropping some blocks during testing doesn't hurt performance much"

(Veit et al., NIPS 16)

How to determine which blocks to drop depending on the input image?



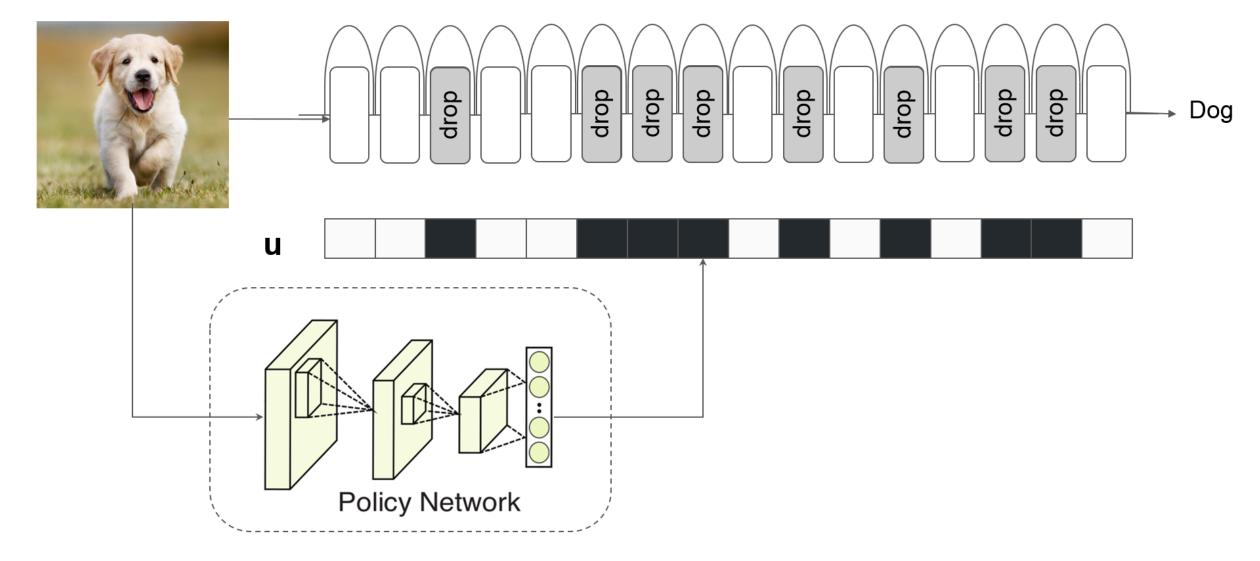




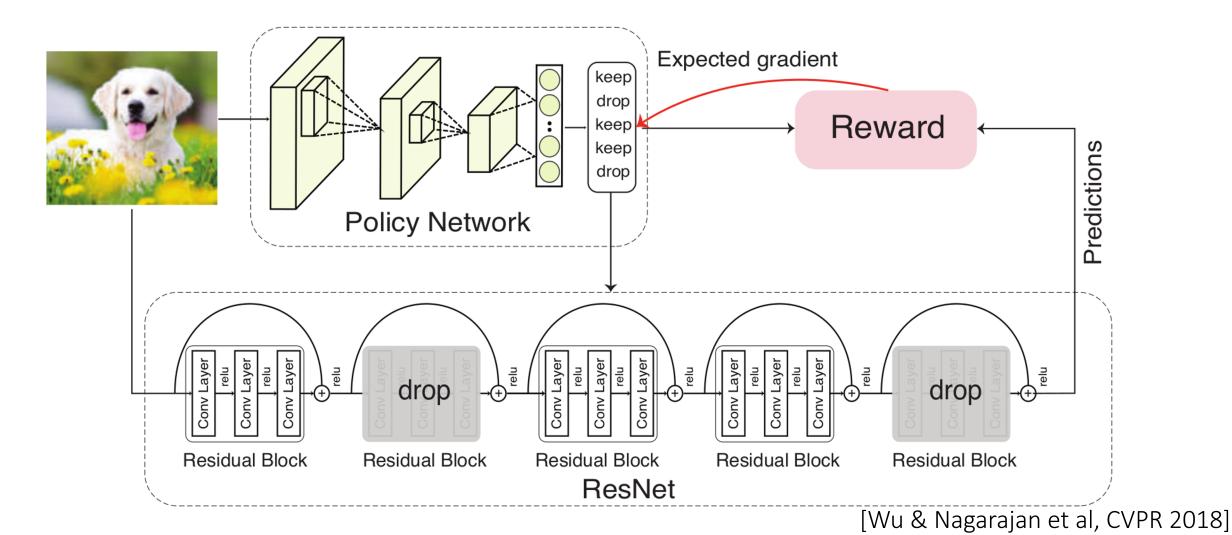
## Our Idea: BlockDrop

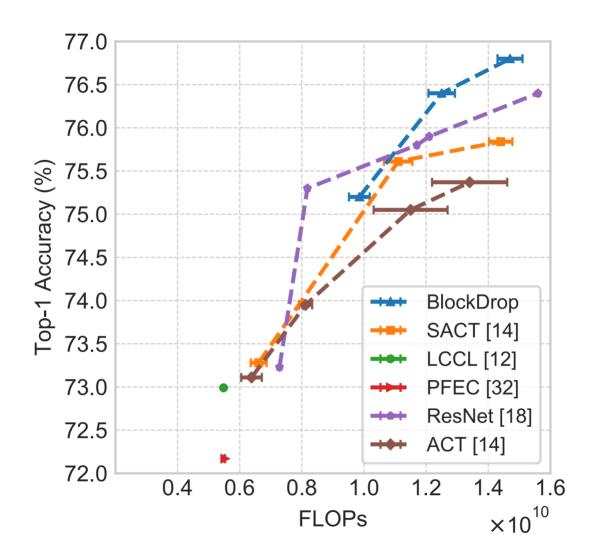
# "Predict which blocks to drop conditioned on the input image, in one shot, without compromising accuracy"





Policy Network Training through Reinforcement Learning





Results on ImageNet:

**20% - 36%** computational savings (FLOPs)

Complementary to other model compression techniques

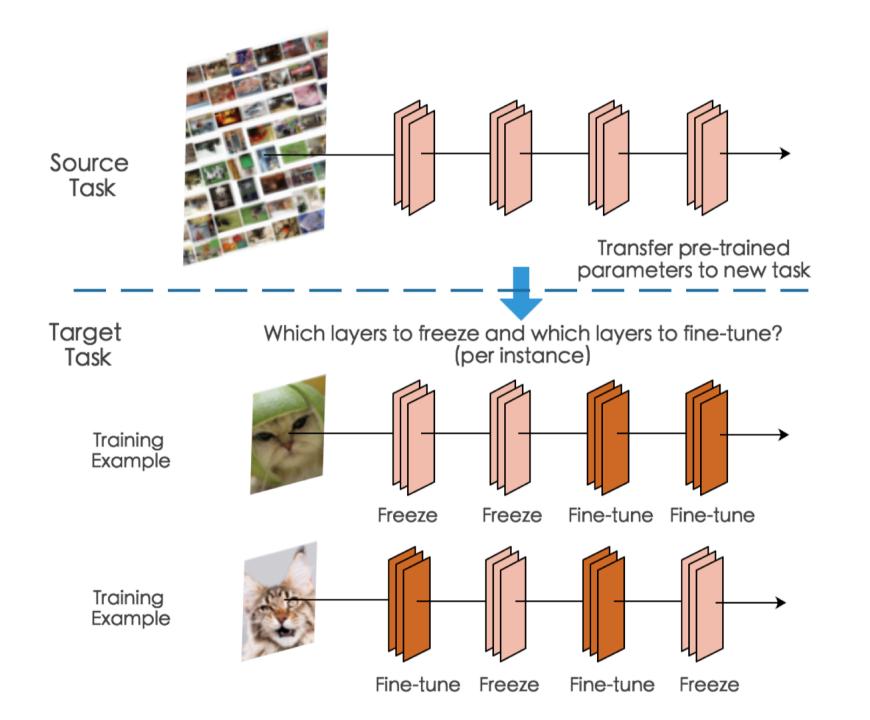
# SpotTune: Transfer Learning through Adaptive Fine-Tuning

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, Rogerio Feris

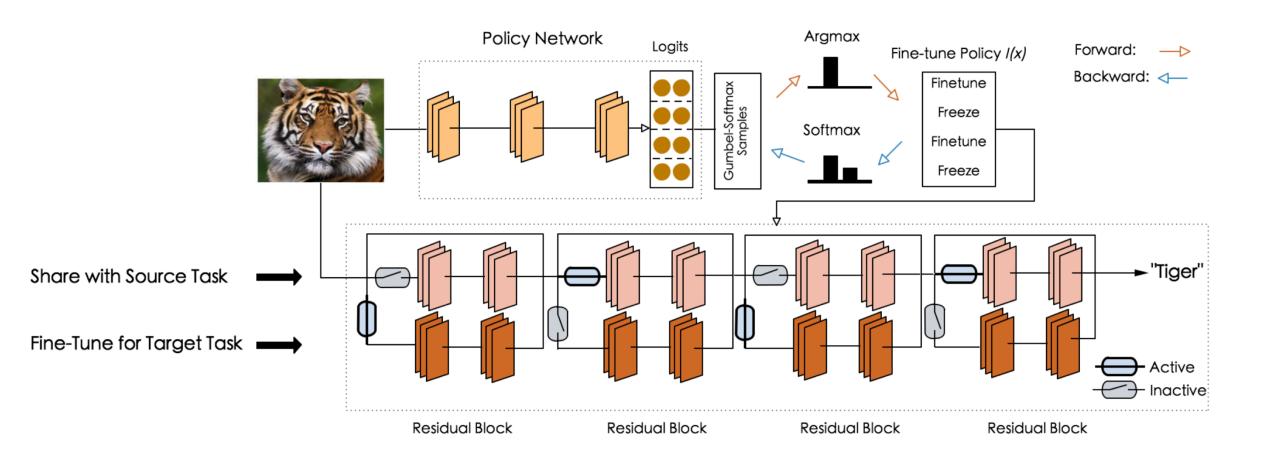
## CVPR 2019

# Data Efficiency: Transfer Learning

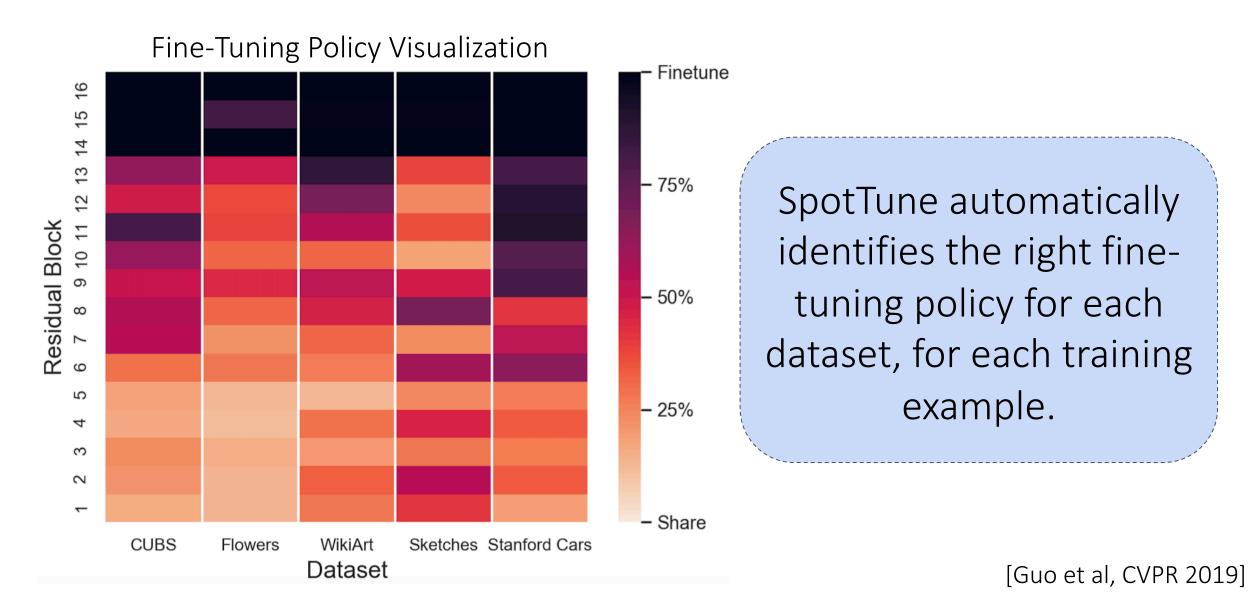
- Fine-tuning is arguably the most widely used approach for transfer learning
- Existing methods are ad-hoc in terms of determining where to finetune in a deep neural network (e.g., fine-tuning last k layers)
- We propose SpotTune, a method that automatically decides, per training example, which layers of a pre-trained model should have their parameters frozen (shared with the source domain) or finetuned (adapted to the target domain)



#### SpotTune: Transfer Learning through Adaptive Fine-Tuning



#### SpotTune: Transfer Learning through Adaptive Fine-Tuning



#### SpotTune: Transfer Learning through Adaptive Fine-Tuning

|                               | #par  | ImNet | Airc. | C100  | DPed  | DTD   | GTSR  | Flwr  | OGlt  | SVHN  | UCF   | Score |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Scratch                       | 10x   | 59.87 | 57.10 | 75.73 | 91.20 | 37.77 | 96.55 | 56.30 | 88.74 | 96.63 | 43.27 | 1625  |
| Scratch+ [37]                 | 11x   | 59.67 | 59.59 | 76.08 | 92.45 | 39.63 | 96.90 | 56.66 | 88.74 | 96.78 | 44.17 | 1826  |
| Feature Extractor             | 1x    | 59.67 | 23.31 | 63.11 | 80.33 | 55.53 | 68.18 | 73.69 | 58.79 | 43.54 | 26.80 | 544   |
| Fine-tuning [38]              | 10x   | 60.32 | 61.87 | 82.12 | 92.82 | 55.53 | 99.42 | 81.41 | 89.12 | 96.55 | 51.20 | 3096  |
| BN Adapt. [5]                 | 1x    | 59.87 | 43.05 | 78.62 | 92.07 | 51.60 | 95.82 | 74.14 | 84.83 | 94.10 | 43.51 | 1353  |
| LwF [26]                      | 10x   | 59.87 | 61.15 | 82.23 | 92.34 | 58.83 | 97.57 | 83.05 | 88.08 | 96.10 | 50.04 | 2515  |
| Series Res. adapt. [37]       | 2x    | 60.32 | 61.87 | 81.22 | 93.88 | 57.13 | 99.27 | 81.67 | 89.62 | 96.57 | 50.12 | 3159  |
| Parallel Res. adapt. [38]     | 2x    | 60.32 | 64.21 | 81.92 | 94.73 | 58.83 | 99.38 | 84.68 | 89.21 | 96.54 | 50.94 | 3412  |
| Res. adapt. (large) [37]      | 12x   | 67.00 | 67.69 | 84.69 | 94.28 | 59.41 | 97.43 | 84.86 | 89.92 | 96.59 | 52.39 | 3131  |
| Res. adapt. decay [37]        | 2x    | 59.67 | 61.87 | 81.20 | 93.88 | 57.13 | 97.57 | 81.67 | 89.62 | 96.13 | 50.12 | 2621  |
| Res. adapt. finetune all [37] | 2x    | 59.23 | 63.73 | 81.31 | 93.30 | 57.02 | 97.47 | 83.43 | 89.82 | 96.17 | 50.28 | 2643  |
| DAN [39]                      | 2x    | 57.74 | 64.12 | 80.07 | 91.30 | 56.54 | 98.46 | 86.05 | 89.67 | 96.77 | 49.48 | 2851  |
| PiggyBack [31]                | 1.28x | 57.69 | 65.29 | 79.87 | 96.99 | 57.45 | 97.27 | 79.09 | 87.63 | 97.24 | 47.48 | 2838  |
| SpotTune                      | 11x   | 60.32 | 63.91 | 80.48 | 96.49 | 57.13 | 99.52 | 85.22 | 88.84 | 96.72 | 52.34 | 3612  |

SpotTune sets the new state of the art on the Visual Decathlon Challenge

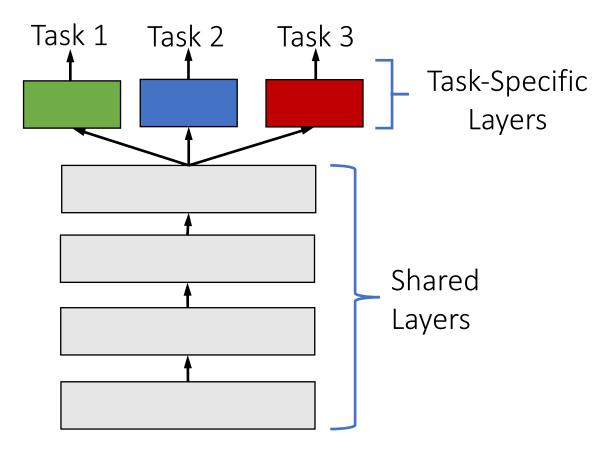
# AdaShare: Learning What to Share for Efficient Multi-Task Learning

Ximeng Sun, Rameswar Panda, Rogerio Feris, Kate Saenko

## NeurIPS 2020

#### Hard Parameter Sharing

 Hand-designed architectures composed of base layers that are shared across tasks and specialized branches that learn task-specific features.

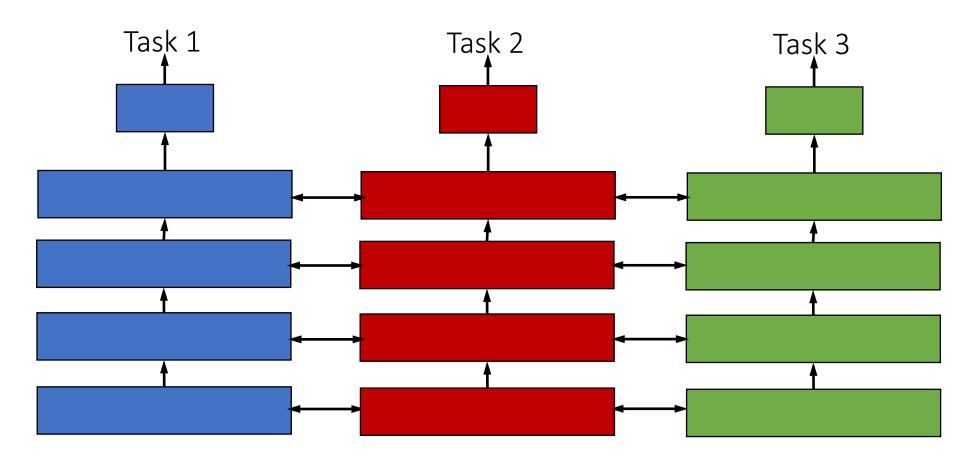


- Performance depends on "where to branch" in the network [Misra et al, 2016]
- The space of possible branching architectures is combinatorially large !

#### Soft Parameter Sharing

• Network column for each task and a mechanism for feature sharing between columns.

Number of parameters grow linearly with the number of tasks !

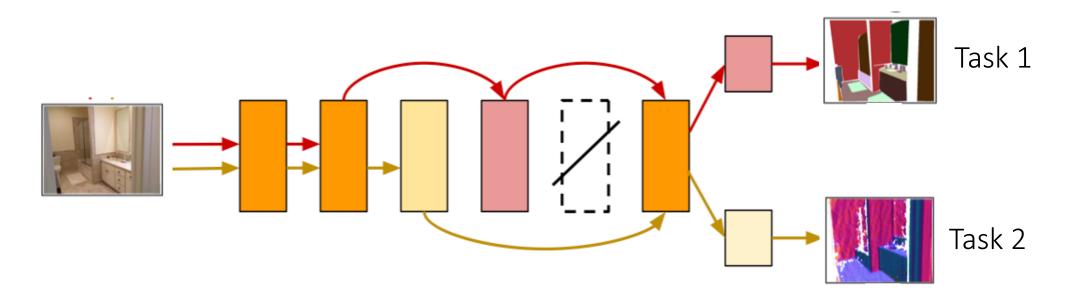


#### Problem

Can we determine which layers in the network should be shared across which tasks and which layers should be task-specific to achieve the best accuracy/memory footprint trade-off for scalable and efficient multi-task learning?

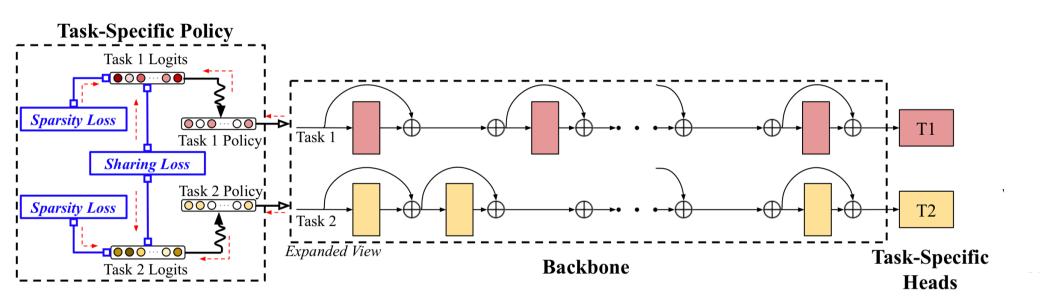
## Proposed Approach: AdaShare

Single network that supports separate execution paths for different tasks

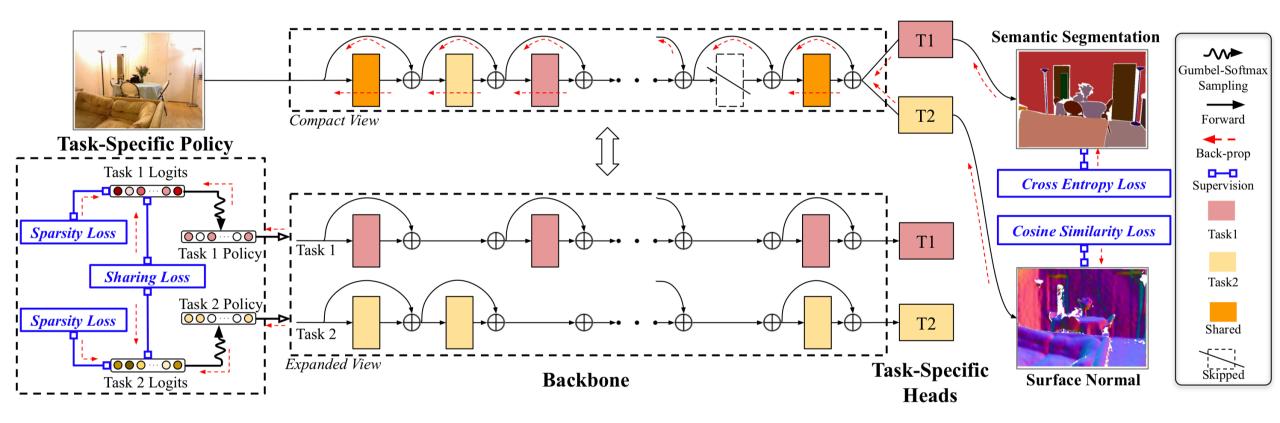




### AdaShare: Learning what to Share in Multi-Task Learning



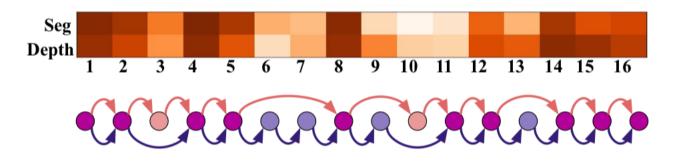
## AdaShare: Learning what to Share in Multi-Task Learning



## AdaShare: Experimental Results

 CityScapes [2 tasks]. AdaShare achieves the best performance on 5 out of 7 metrics using less than 1/2 parameters of most baselines.

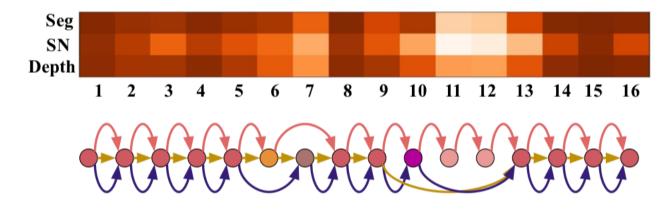
| Model        | # Params<br>↓ | Semantic Seg. |             | Depth Prediction |      |                              |            |            |  |
|--------------|---------------|---------------|-------------|------------------|------|------------------------------|------------|------------|--|
|              |               | mIoU ↑        | Pixel       | Error↓           |      | $\delta$ , within $\uparrow$ |            |            |  |
|              |               |               | Acc ↑       | Abs              | Rel  | 1.25                         | $1.25^{2}$ | $1.25^{3}$ |  |
| Single-Task  | 2             | 40.2          | <u>74.7</u> | 0.017            | 0.33 | 70.3                         | 86.3       | 93.3       |  |
| Multi-Task   | 1             | 37.7          | 73.8        | 0.018            | 0.34 | 72.4                         | 88.3       | 94.2       |  |
| Cross-Stitch | 2             | 40.3          | 74.3        | 0.015            | 0.30 | 74.2                         | 89.3       | 94.9       |  |
| Sluice       | 2             | 39.8          | 74.2        | 0.016            | 0.31 | 73.0                         | 88.8       | 94.6       |  |
| NDDR-CNN     | 2.07          | 41.5          | 74.2        | 0.017            | 0.31 | 74.0                         | 89.3       | 94.8       |  |
| MTAN         | 2.41          | 40.8          | 74.3        | 0.015            | 0.32 | 75.1                         | 89.3       | 94.6       |  |
| AdaShare     | 1             | 41.5          | 74.9        | 0.016            | 0.33 | 75.5                         | 89.8       | 94.9       |  |



## AdaShare: Experimental Results

 NYU v2 [3 tasks]. AdaShare achieves the best performance on 10 out of 12 metrics using less than 1/3 parameters of most baselines.

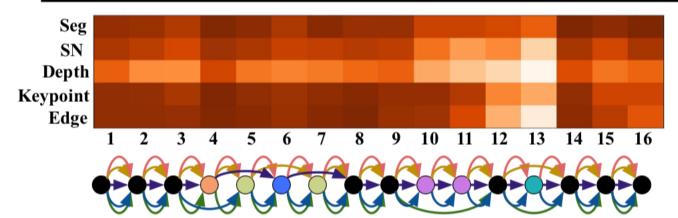
| Model # Params↓     |            | Semantic Seg. |             | Surface Normal Prediction |        |                              |       | Depth Prediction |         |      |                              |            |            |
|---------------------|------------|---------------|-------------|---------------------------|--------|------------------------------|-------|------------------|---------|------|------------------------------|------------|------------|
|                     | # Params ↓ | mIoU ↑        | Pixel Acc ↑ | Error ↓                   |        | $\theta$ , within $\uparrow$ |       |                  | Error ↓ |      | $\delta$ , within $\uparrow$ |            |            |
|                     |            |               |             | Mean                      | Median | 11.25°                       | 22.5° | 30°              | Abs     | Rel  | 1.25                         | $1.25^{2}$ | $1.25^{3}$ |
| Single-Task         | 3          | 27.5          | 58.9        | 17.5                      | 15.2   | 34.9                         | 73.3  | 85.7             | 0.62    | 0.25 | 57.9                         | 85.8       | 95.7       |
| Multi-Task          | 1          | 24.1          | 57.2        | 16.6                      | 13.4   | 42.5                         | 73.2  | 84.6             | 0.58    | 0.23 | 62.4                         | 88.2       | 96.5       |
| <b>Cross-Stitch</b> | 3          | 25.4          | 57.6        | 17.2                      | 14.0   | 41.4                         | 70.5  | 82.9             | 0.58    | 0.23 | 61.4                         | 88.4       | 95.5       |
| Sluice              | 3          | 23.8          | 56.9        | 17.2                      | 14.4   | 38.9                         | 71.8  | 83.9             | 0.58    | 0.24 | 61.9                         | 88.1       | 96.3       |
| NDDR-CNN            | 3.15       | 21.6          | 53.9        | 17.1                      | 14.5   | 37.4                         | 73.7  | 85.6             | 0.66    | 0.26 | 55.7                         | 83.7       | 94.8       |
| MTAN                | 3.11       | 26.0          | 57.2        | 16.6                      | 13.0   | 43.7                         | 73.3  | 84.4             | 0.57    | 0.25 | 62.7                         | 87.7       | 95.9       |
| AdaShare            | 1          | 30.2          | 62.4        | 16.6                      | 12.9   | 45.0                         | 71.7  | 83.0             | 0.55    | 0.20 | 64.5                         | 90.5       | 97.8       |



## AdaShare: Experimental Results

 Tiny-Taskonomy [5 Tasks]. AdaShare outperforms the baselines on 3 out of 5 tasks using less than 1/5 parameters of most baselines.

| Models              | # Params ↓ | Seg ↓ | SN ↑  | Depth $\downarrow$ | Keypoint $\downarrow$ | Edge ↓ |
|---------------------|------------|-------|-------|--------------------|-----------------------|--------|
| Single-Task         | 5          | 0.575 | 0.707 | 0.022              | 0.197                 | 0.212  |
| Multi-Task          | 1          | 0.587 | 0.702 | 0.024              | 0.194                 | 0.201  |
| <b>Cross-Stitch</b> | 5          | 0.560 | 0.684 | 0.022              | 0.202                 | 0.219  |
| Sluice              | 5          | 0.610 | 0.702 | 0.023              | 0.192                 | 0.198  |
| NDDR-CNN            | 5.41       | 0.539 | 0.705 | 0.024              | 0.194                 | 0.206  |
| MTAN                | 4.51       | 0.637 | 0.702 | 0.023              | 0.193                 | 0.203  |
| AdaShare            | 1          | 0.566 | 0.707 | 0.025              | 0.192                 | 0.193  |



## Dynamic Neural Networks for Video Classification

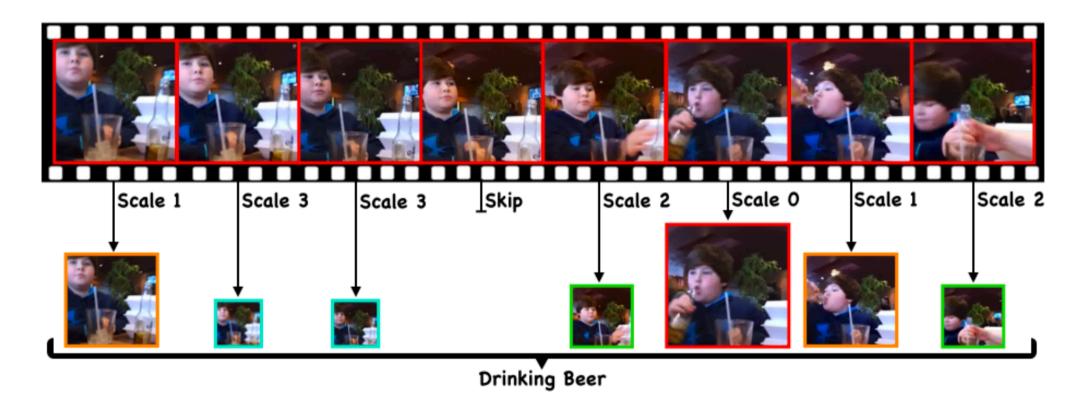
MIT: Bowen Pan, Camilo Fosco, Alex Andonian, Aude Oliva

BU & IBM: Ximeng Sun and Kate Saenko

**IBM:** Yue Meng, Rameswar Panda, Chung-Ching Lin, Richard Chen, Quanfu Fan, Prasanna Sattigeri, Leonid Karlinsky, Rogerio Feris

## AR-Net: Adaptive frame resolution for efficient action recognition [ECCV 2020]

 Key idea is to select the resolution of each frame on-the-fly to achieve the best accuracy/efficiency trade-off in video classification

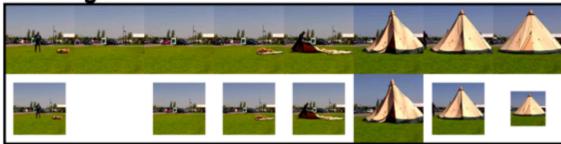


## **AR-Net: Experimental Results**

#### Futsal

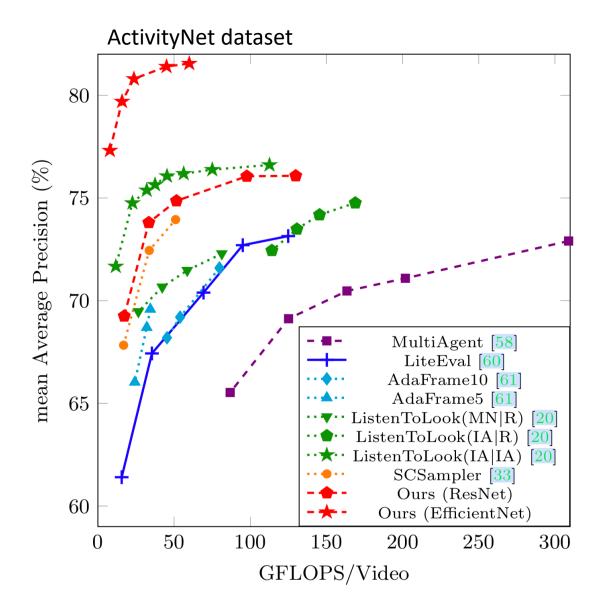


#### Pitching a tent



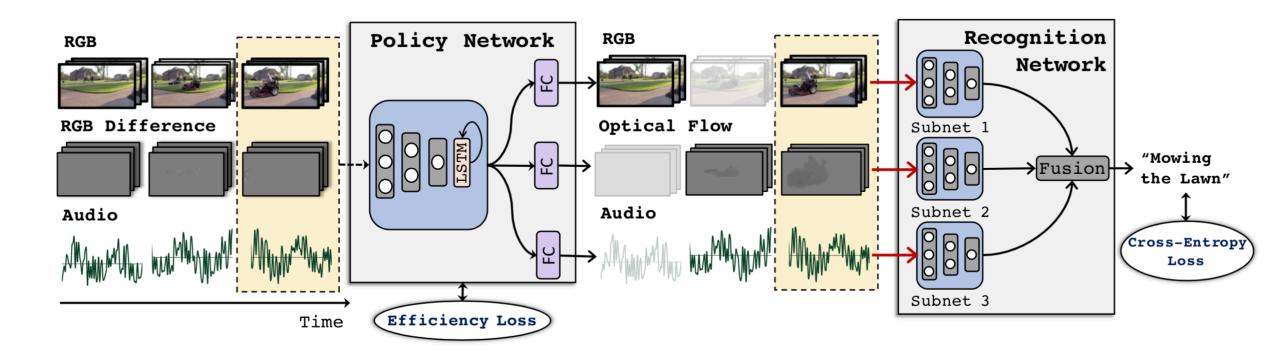
#### Grooming dog





# AdaMML: Adaptive multimodal learning for efficient video recognition

 Key idea is to select on-the-fly the optimal modalities for each video segment conditioned on the input for efficient video recognition



## AdaMML: Experimental Results

| Method         | Acc. (%) | RGB   | Flow  | Audio | GFLOPs |
|----------------|----------|-------|-------|-------|--------|
| RGB            | 82.85    | 100   | _     | —     | 141.36 |
| Flow           | 75.73    | —     | 100   | —     | 163.39 |
| Audio          | 65.49    | -     | -     | 100   | 3.82   |
| Naïve          | 82.81    | 100   | 100   | 100   | 308.56 |
| AdaMML-Flow    | 88.54    | 56.13 | 20.31 | 97.49 | 132.94 |
| AdaMML-RGBDiff | 89.06    | 55.06 | 26.82 | 95.12 | 141.97 |

RGB+Flow+Audio Performance on Kinetics-Sounds dataset

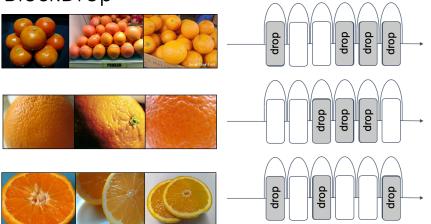
#### Action: Playing Accordion

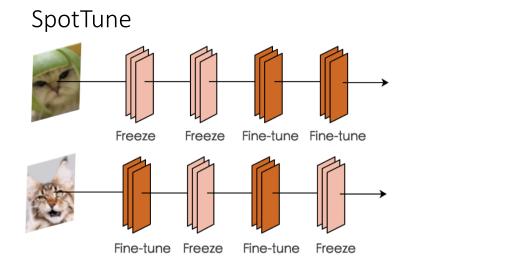


## Summary

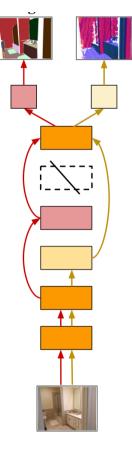
Adaptive (dynamic) neural networks for efficient image and video classification



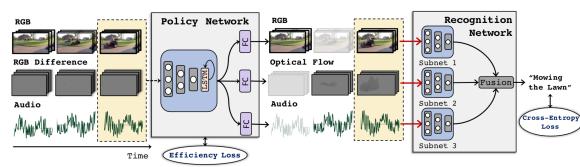




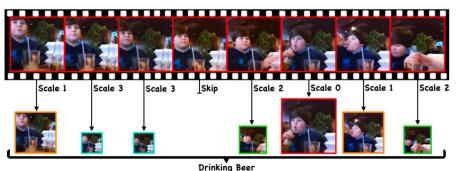
Adashare



#### AdaMML



#### AR-Net



## References

- Z. Wu\*, T. Nagarajan\*, A. Kumar, S. Rennie, L. Davis, K. Grauman and R. S. Feris. "BlockDrop: Dynamic Inference Paths in Residual Networks." CVPR 2018, Spotlight
- Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing and R. S. Feris. "SpotTune: Transfer Learning Through Adaptive Fine-Tuning" CVPR 2019
- Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, R. S. Feris. "Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification" CVPR 2017
- X. Sun, R. Panda and R. S. Feris. "AdaShare: Learning What to Share for Efficient Deep Multi-Task Learning" NeurIPS 2020
- Y. Meng, C. Lin, R. Panda, P. Sattigeri, L. Karlinsky, A. Oliva, K. Saenko, R. S. Feris. "AR-Net: Adaptive Frame Resolution for Efficient Action Recognition" ECCV 2020
- C. Chen\*, R. Panda\*, Q. Fan, X. Sun, K. Saenko, A. Oliva, R. S. Feris. "AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition" (under submission)

(\* equal contribution)