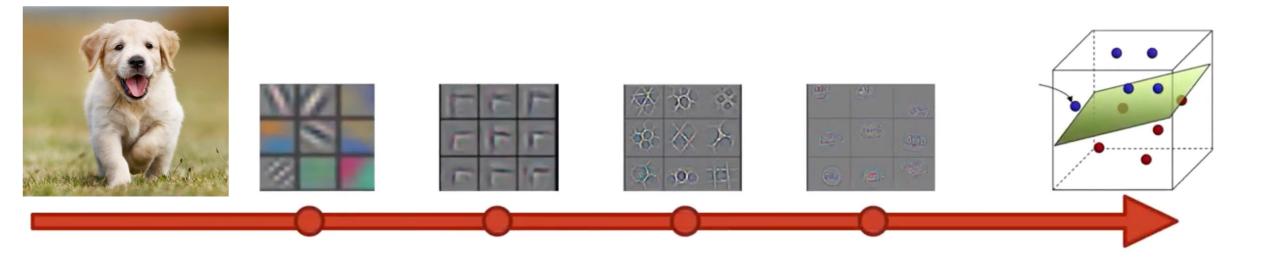
Computational Visual Pathways for Multi-Task Learning and Simulation

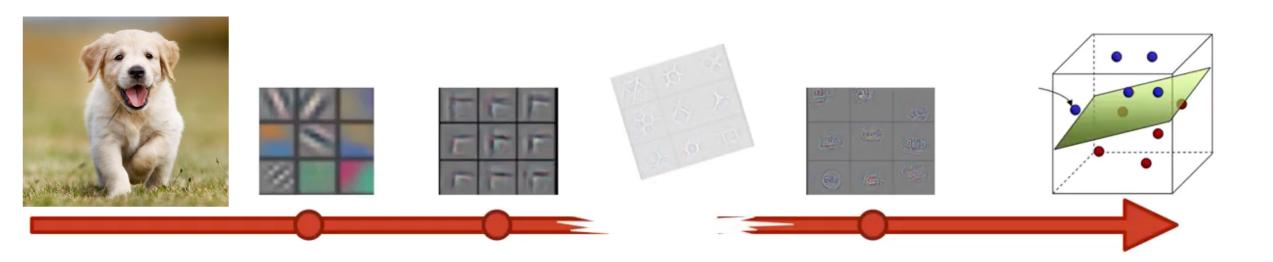
Rogerio Schmidt Feris Principal Scientist and Manager MIT-IBM Watson Al Lab

Feed-Forward Convolutional Neural Networks

• Single path, where the exact same set of features are extracted for all inputs

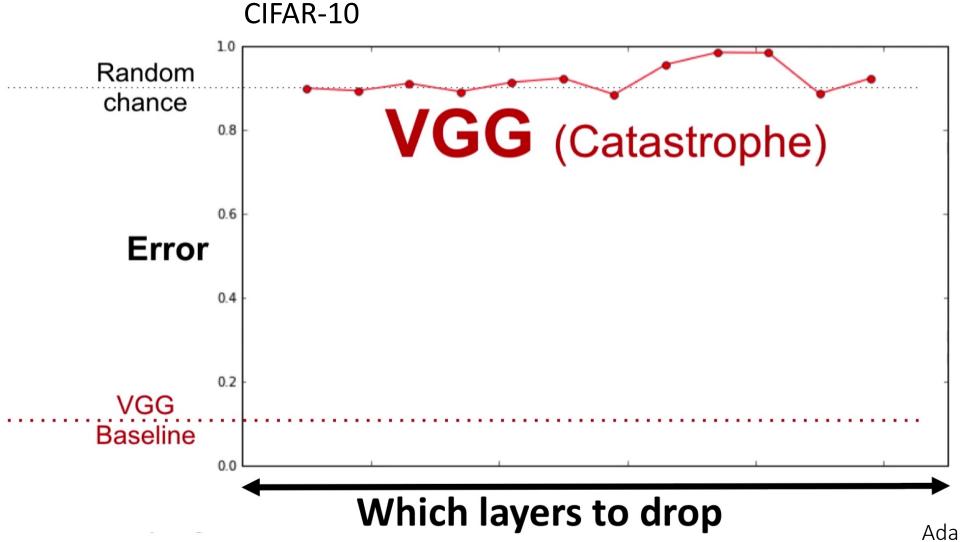


Feed-Forward Convolutional Neural Networks

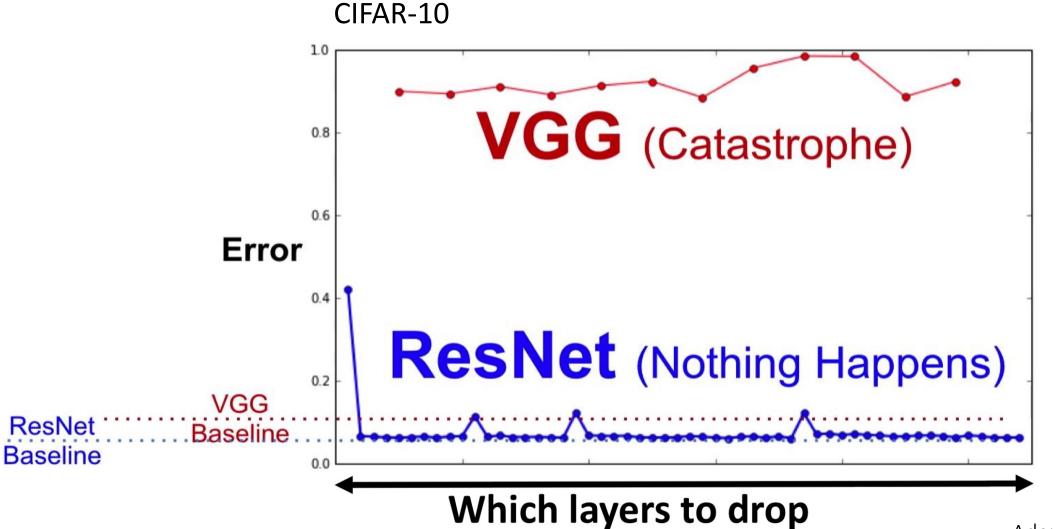


What happens when we drop a layer at test time?

What happens when we drop a layer at test time?



What happens if we delete a layer at test time?



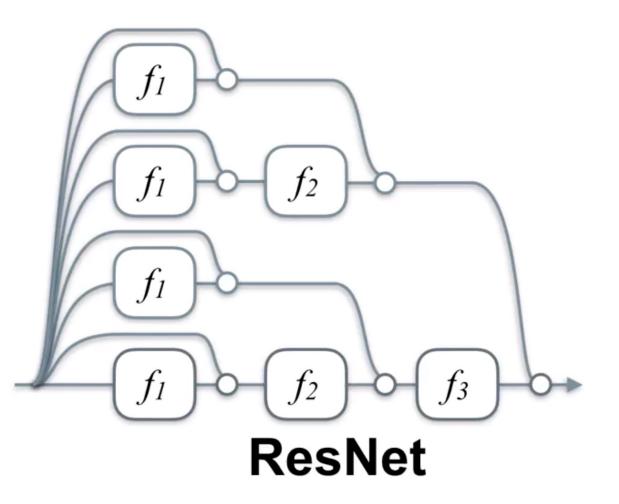
Why does this happen?

VGG

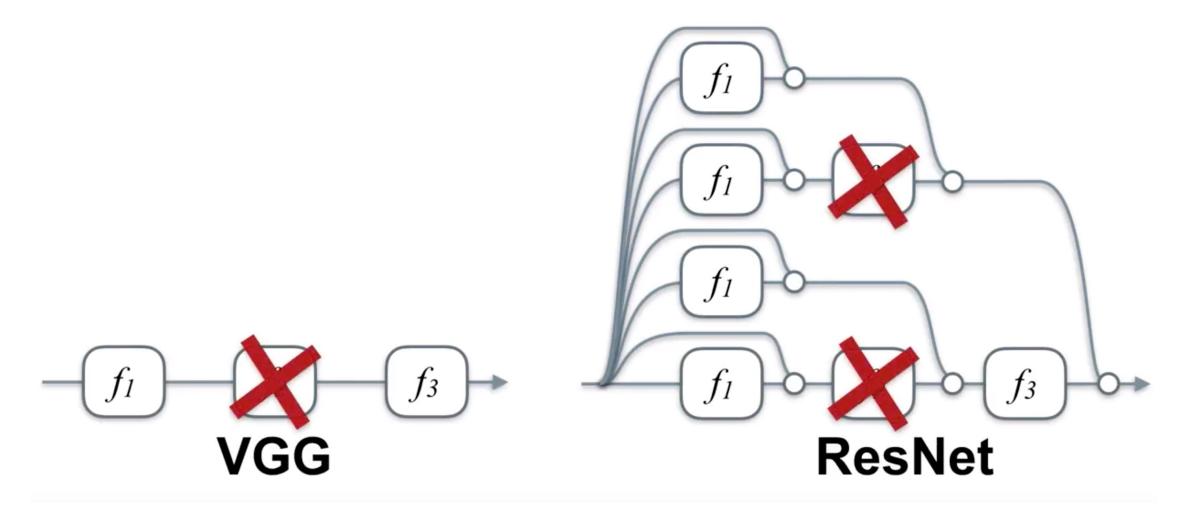
ResNet

Why does this happen?

The unraveled view is equivalent and showcases the many paths in ResNet.

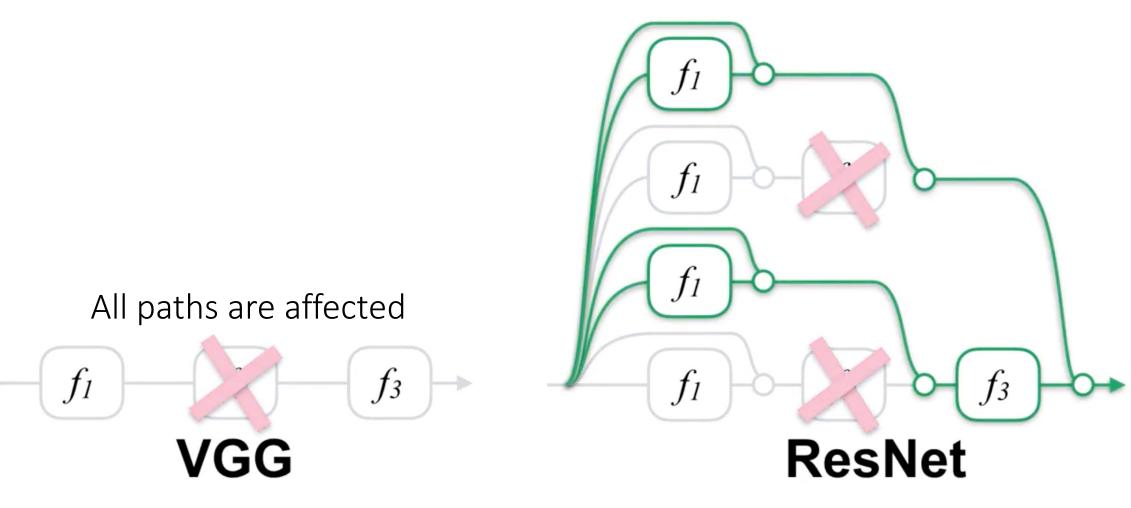


Deletion of a Layer

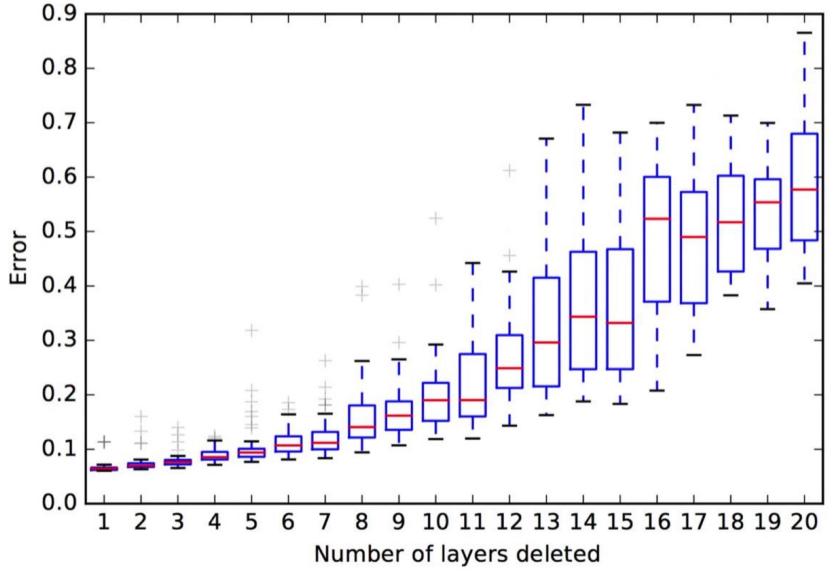


Deletion of a Layer

Only half of the paths are affected



Performance varies smoothly when deleting <u>several</u> layers



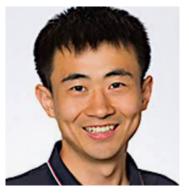
Can we delete a sequence of layers without performance drop?

Important for applications where fast inference is essential

Can we delete a sequence of layers without performance drop?

In the experiment of [Veit et al, 2016]:

- Layers were dropped randomly
- Same layers were dropped for all images



Zuxuan Wu

Tushar Nagarajan

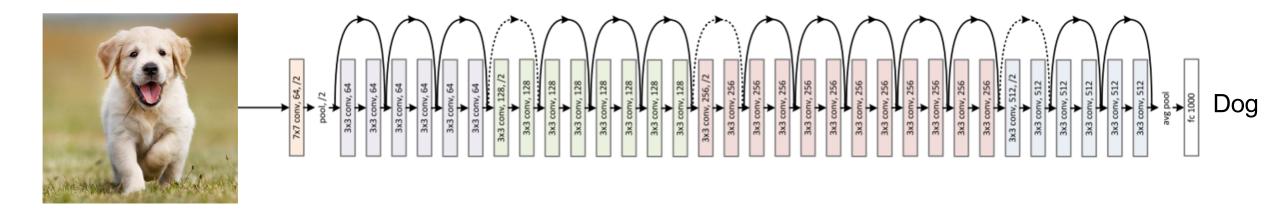
Abhishek Kumar

Steve Rennie

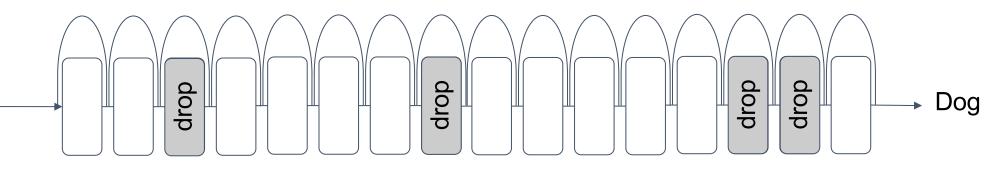
Larry Davis

Kristen Grauman

Rogerio Feris



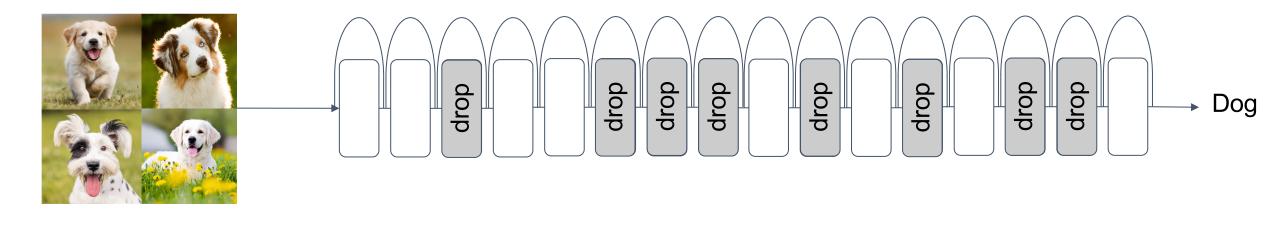
Do we really need to run 100+ layers / residual blocks of a neural network (which is expensive) if we have an "easy" input image?

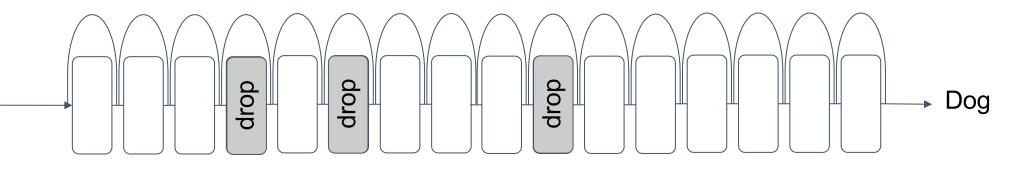


"Dropping some blocks during testing doesn't hurt performance much"

(Veit et al., NIPS 16)

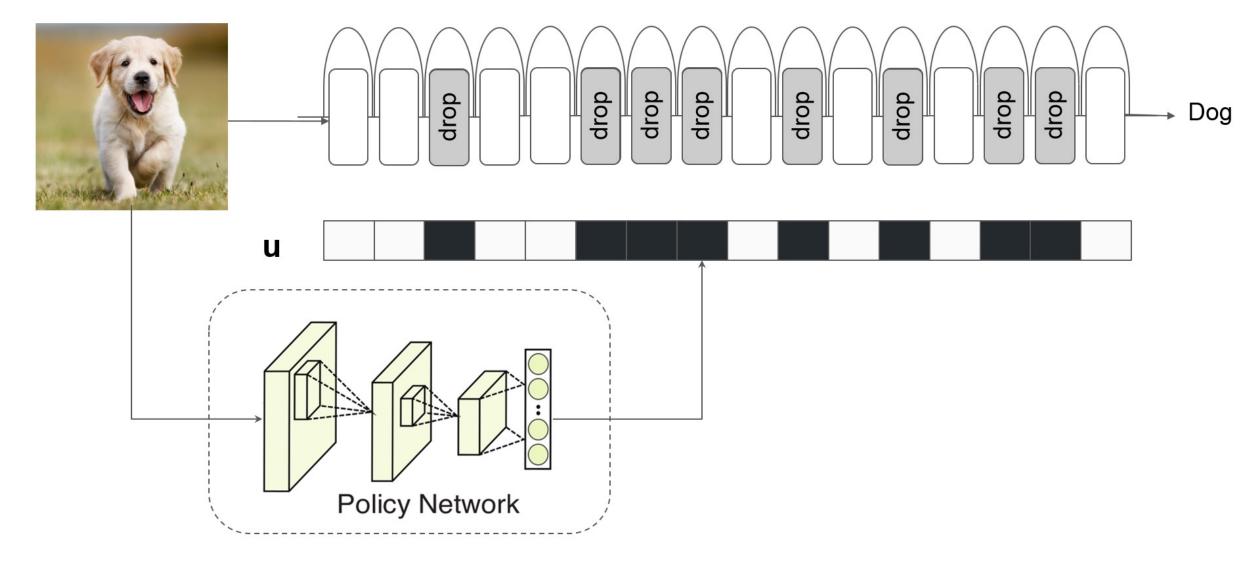
How to determine which blocks to drop depending on the input image?



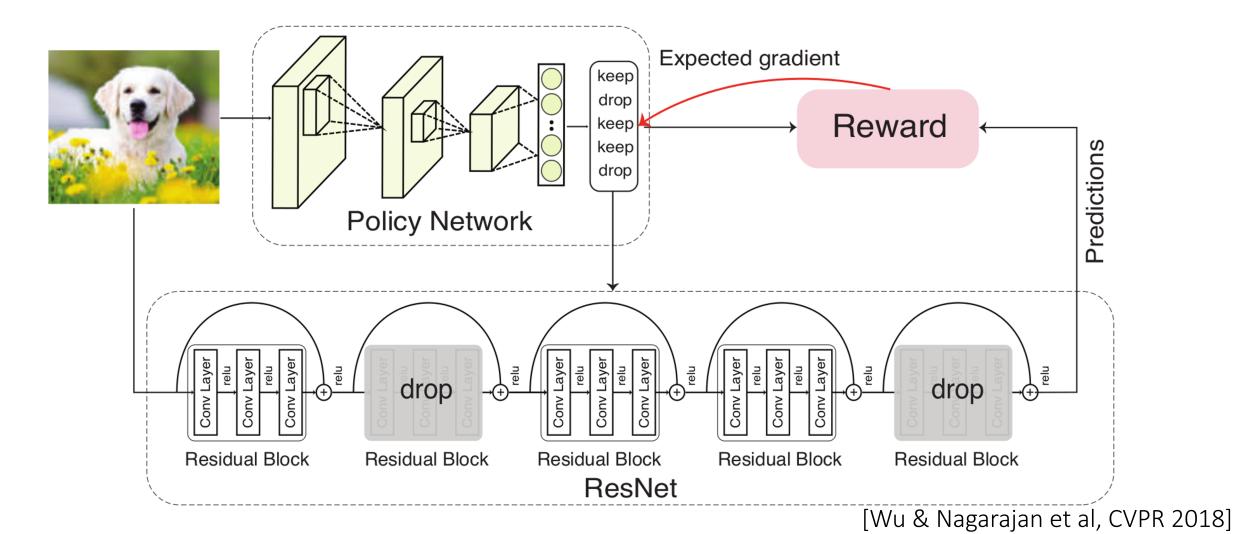


Our Idea: BlockDrop

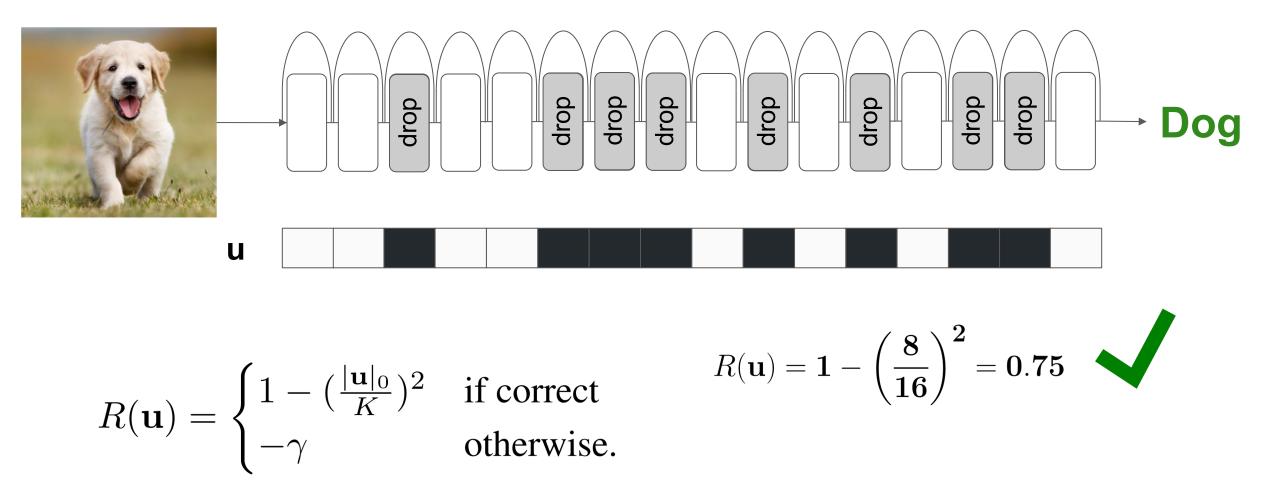
Predict which blocks to drop conditioned on the input image, in one shot, without compromising accuracy

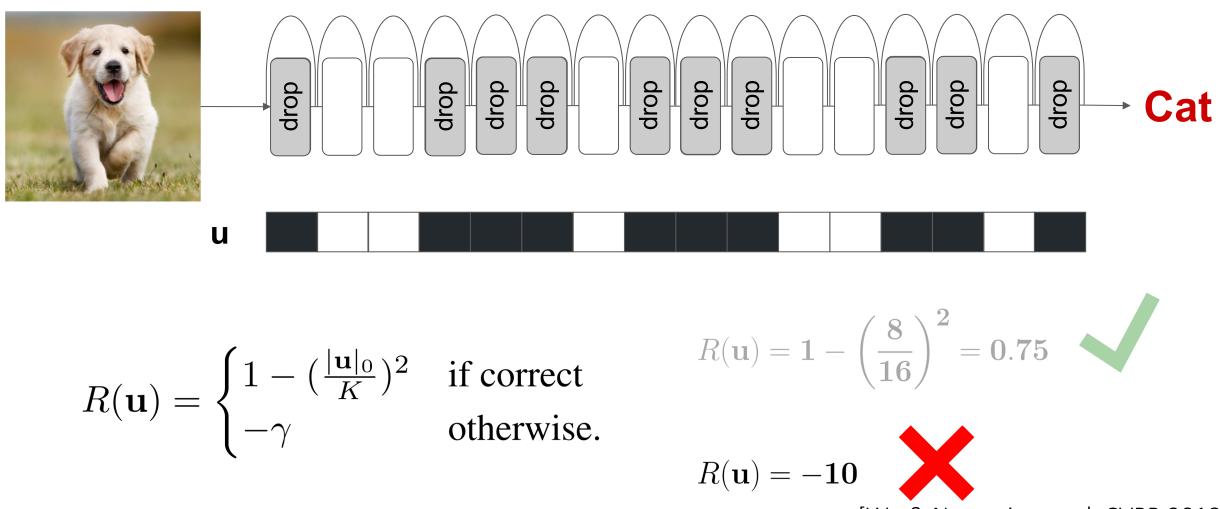


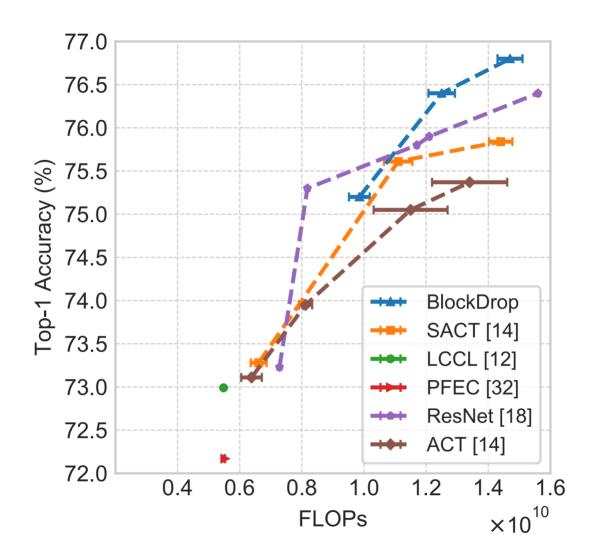
Policy Network Training using Policy Gradients



Reward function takes into account both accuracy and block usage





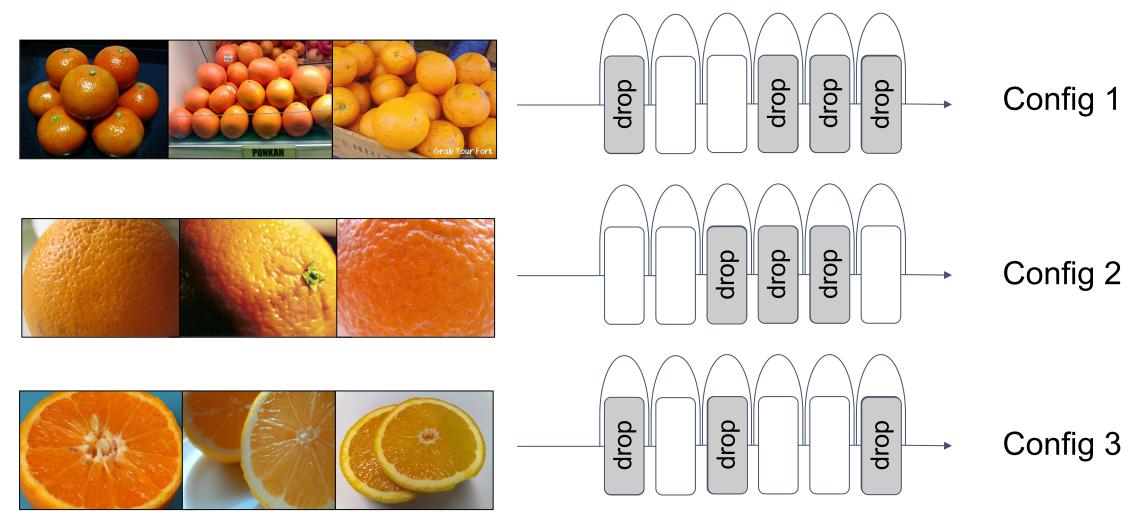


Results on ImageNet:

20% - 36% computational savings (FLOPs)

Complementary to other model compression techniques

Different policies capture different visual patterns



orange

Block usage in neural networks agrees with our perception of *difficulty*

Adashare: Learning What To Share For Efficient Deep Multi-Task Learning

NeurIPS 2020

Ximeng Sun

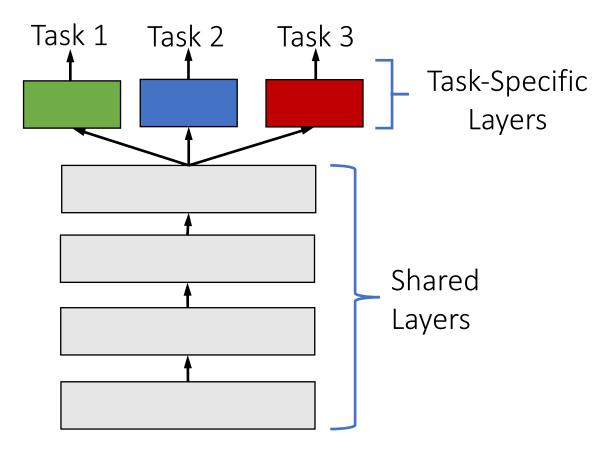
Rameswar Panda

Kate Saenko

Rogerio Feris

Hard Parameter Sharing

 Hand-designed architectures composed of base layers that are shared across tasks and specialized branches that learn task-specific features.

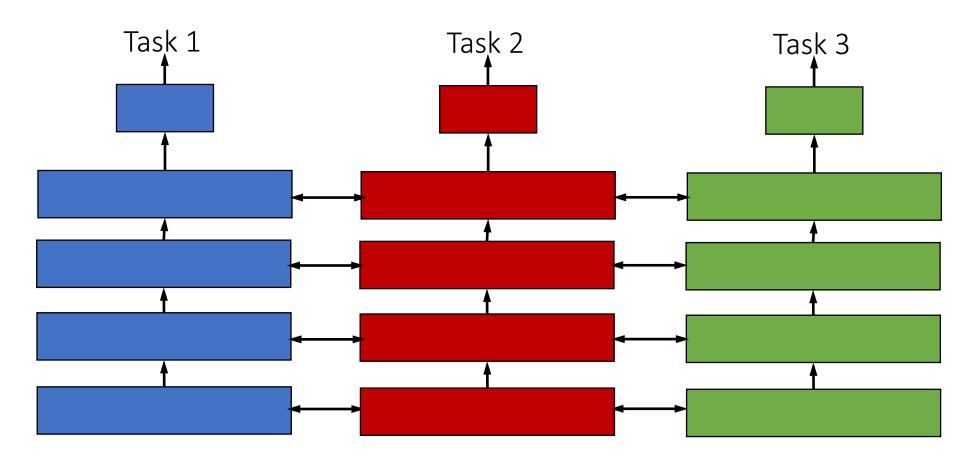


- Performance depends on "where to branch" in the network [Misra et al, 2016]
- The space of possible branching architectures is combinatorially large !

Soft Parameter Sharing

• Network column for each task and a mechanism for feature sharing between columns.

Number of parameters grow linearly with the number of tasks !

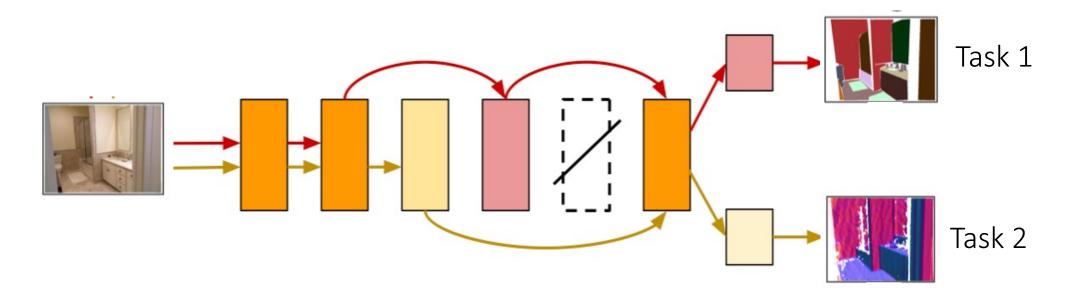


Problem

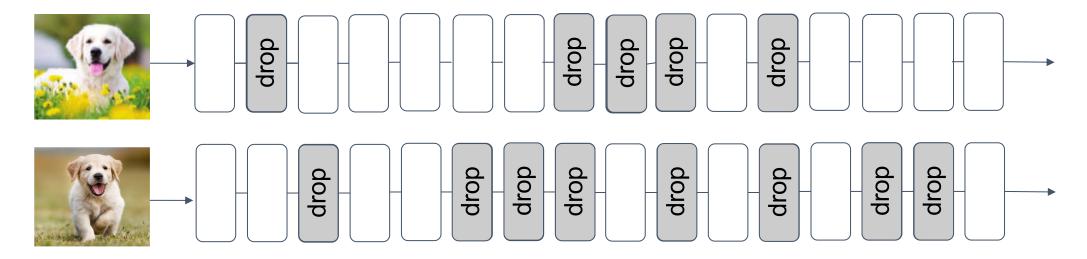
Can we determine which layers in the network should be shared across which tasks and which layers should be task-specific to achieve the best accuracy/memory footprint trade-off for scalable and efficient multi-task learning?

Proposed Approach: AdaShare

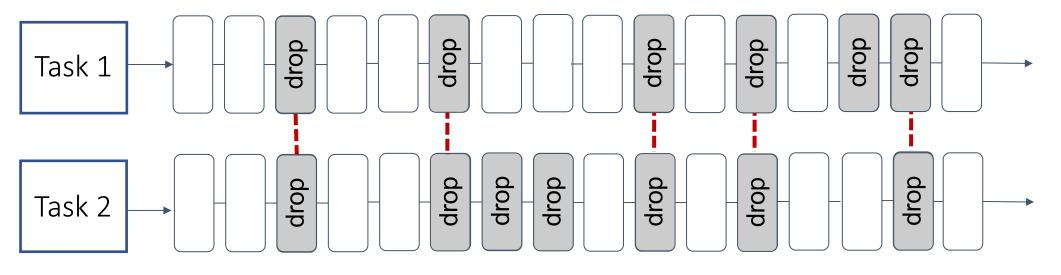
Single network that supports separate execution paths for different tasks



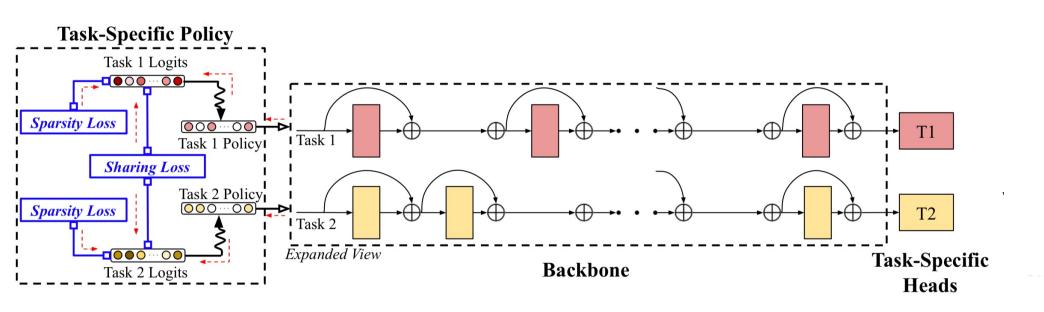
BlockDrop: Per-instance routing; Accuracy + Sparsity reward

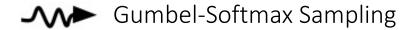


AdaShare: Per-task routing; Accuracy + Sparsity + Sharing reward

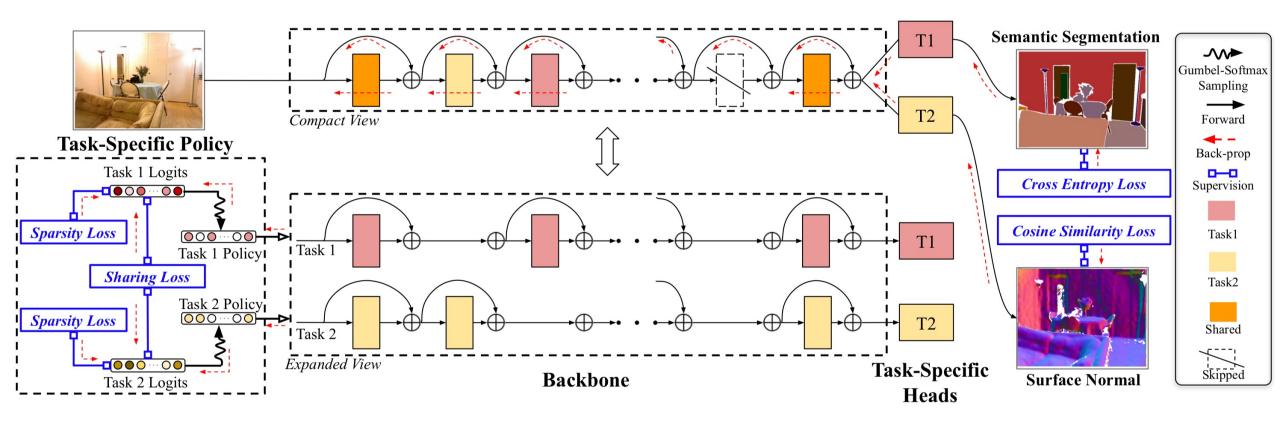


AdaShare: Learning what to Share in Multi-Task Learning





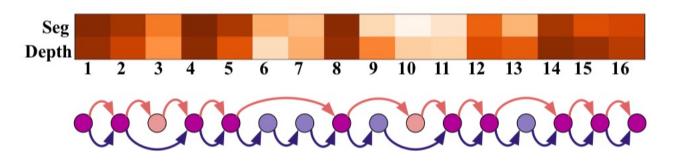
AdaShare: Learning what to Share in Multi-Task Learning



AdaShare: Experimental Results

 CityScapes [2 tasks]. AdaShare achieves the best performance on 5 out of 7 metrics using less than 1/2 parameters of most baselines.

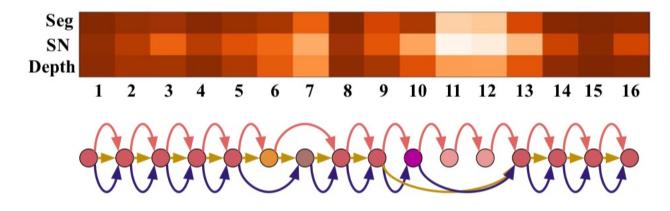
Model	# Params ↓	Semanti	c Seg.	Depth Prediction					
		mIoU ↑	Pixel	Error↓		δ , within \uparrow			
			Acc ↑	Abs	Rel	1.25	1.25^{2}	1.25^{3}	
Single-Task	2	40.2	74.7	0.017	0.33	70.3	86.3	93.3	
Multi-Task	1	37.7	73.8	0.018	0.34	72.4	88.3	94.2	
Cross-Stitch	2	40.3	74.3	0.015	0.30	74.2	89.3	94.9	
Sluice	2	39.8	74.2	0.016	0.31	73.0	88.8	94.6	
NDDR-CNN	2.07	41.5	74.2	0.017	0.31	74.0	89.3	94.8	
MTAN	2.41	40.8	74.3	0.015	0.32	75.1	89.3	94.6	
AdaShare	1	41.5	74.9	0.016	0.33	75.5	89.8	94.9	



AdaShare: Experimental Results

 NYU v2 [3 tasks]. AdaShare achieves the best performance on 10 out of 12 metrics using less than 1/3 parameters of most baselines.

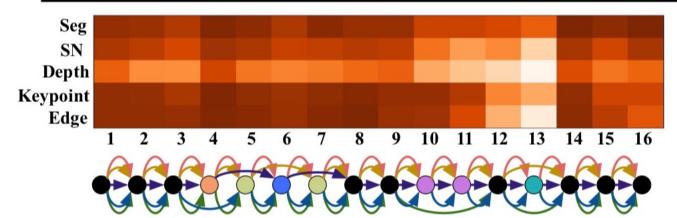
Model	# Params ↓	Semantic Seg.		Surface Normal Prediction				Depth Prediction					
		mIoU ↑	Pixel Acc ↑	Error ↓		θ , within \uparrow			Error ↓		δ , within \uparrow		
			FIXE ALC	Mean	Median	11.25°	22.5°	30°	Abs	Rel	1.25	1.25^{2}	1.25^{3}
Single-Task	3	27.5	58.9	17.5	15.2	34.9	73.3	85.7	0.62	0.25	57.9	85.8	95.7
Multi-Task	1	24.1	57.2	16.6	13.4	42.5	73.2	84.6	0.58	0.23	62.4	88.2	96.5
Cross-Stitch	3	25.4	57.6	17.2	14.0	41.4	70.5	82.9	0.58	0.23	61.4	88.4	95.5
Sluice	3	23.8	56.9	17.2	14.4	38.9	71.8	83.9	0.58	0.24	61.9	88.1	96.3
NDDR-CNN	3.15	21.6	53.9	17.1	14.5	37.4	73.7	85.6	0.66	0.26	55.7	83.7	94.8
MTAN	3.11	26.0	57.2	16.6	13.0	43.7	73.3	84.4	0.57	0.25	62.7	87.7	95.9
AdaShare	1	30.2	62.4	16.6	12.9	45.0	71.7	83.0	0.55	0.20	64.5	90.5	97.8



AdaShare: Experimental Results

 Tiny-Taskonomy [5 Tasks]. AdaShare outperforms the baselines on 3 out of 5 tasks using less than 1/5 parameters of most baselines.

Models	# Params ↓	Seg ↓	SN ↑	Depth \downarrow	Keypoint \downarrow	Edge ↓
Single-Task	5	0.575	0.707	0.022	0.197	0.212
Multi-Task	1	0.587	0.702	0.024	0.194	0.201
Cross-Stitch	5	0.560	0.684	0.022	0.202	0.219
Sluice	5	0.610	0.702	0.023	0.192	0.198
NDDR-CNN	5.41	0.539	0.705	0.024	0.194	0.206
MTAN	4.51	0.637	0.702	0.023	0.193	0.203
AdaShare	1	0.566	0.707	0.025	0.192	0.193



Task2Sim: Towards Effective Pre-training and Transfer from Synthetic Data Arxiv 2021

Samarth Mishra

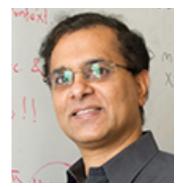
Rameswar Panda

Cheng Phoo

Richard Chen

Leonid Karlinsly

Kate Saenko

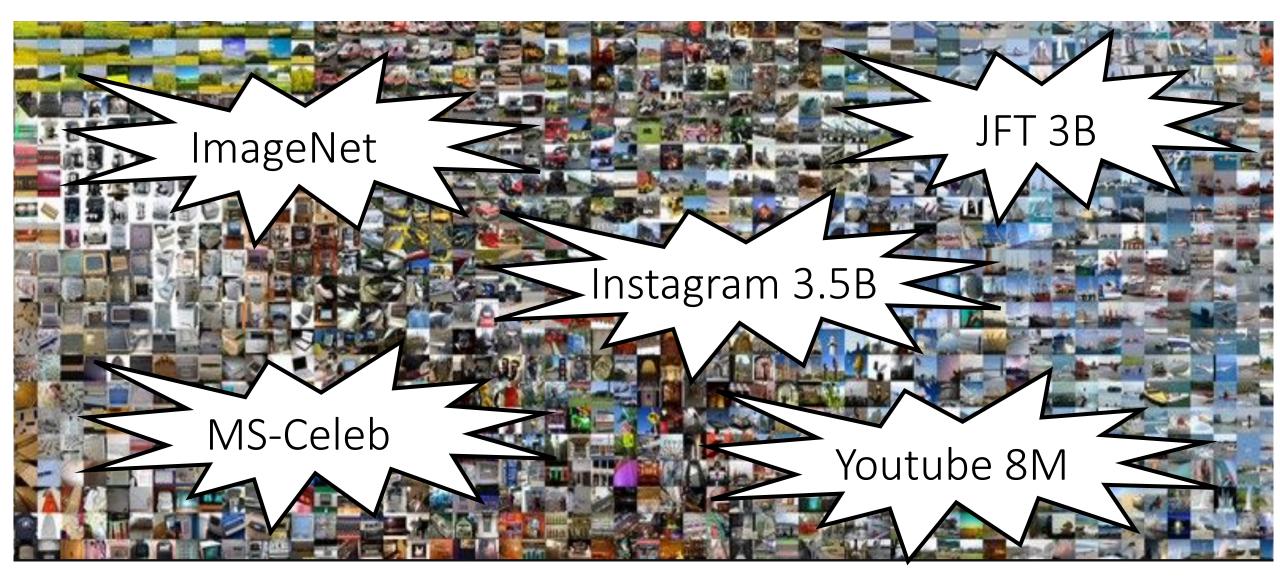


Venkatesh Saligrama

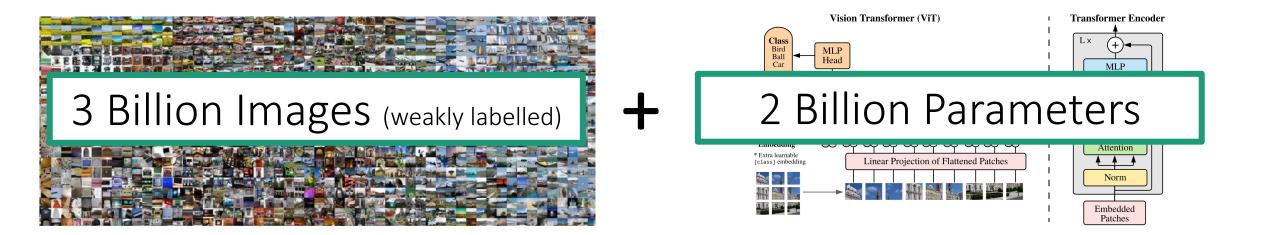
Rogerio Feris

Status Quo: Pre-train Models with Massive Datasets

(Labeled/Unlabeled/Weakly-Labeled)



Larger Pre-training → Better Results



90.45% Top-1 Accuracy in ImageNet

Xiaohua Zhai et al. "Scaling Vision Transformers", Arxiv 2021

Issues with Large-scale Pre-training

Expensive Curation

Privacy concerns and human bias

Private Access

Issues with usage rights

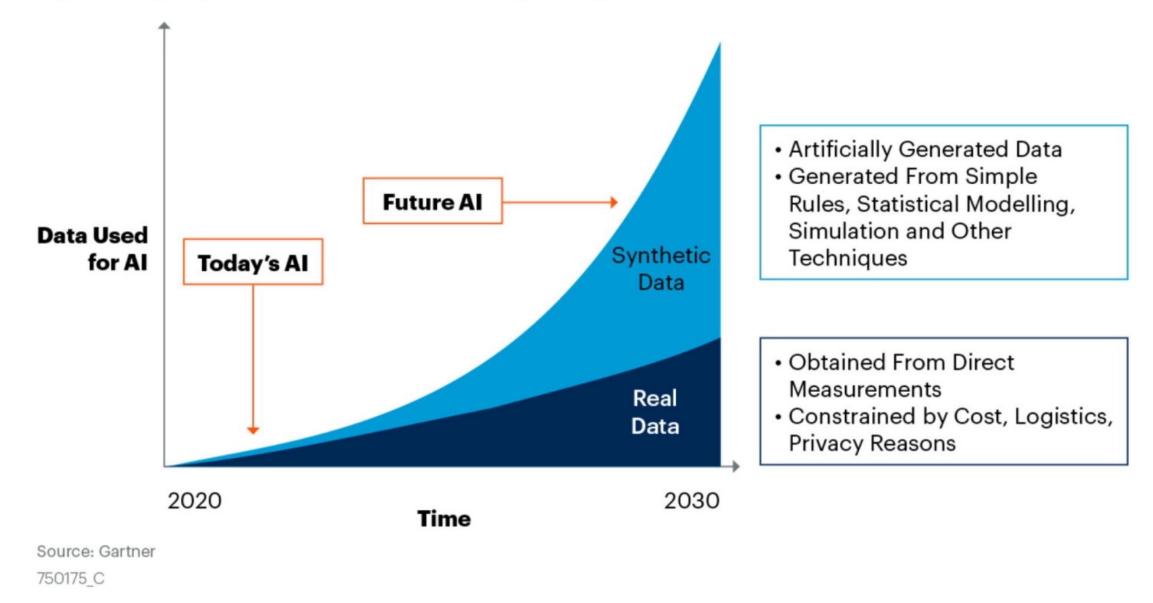
Promising way to address these issues: synthetic data

Embodied Perception

Face simulation

Autonomous Driving

By 2030, Synthetic Data Will Completely Overshadow Real Data in AI Models

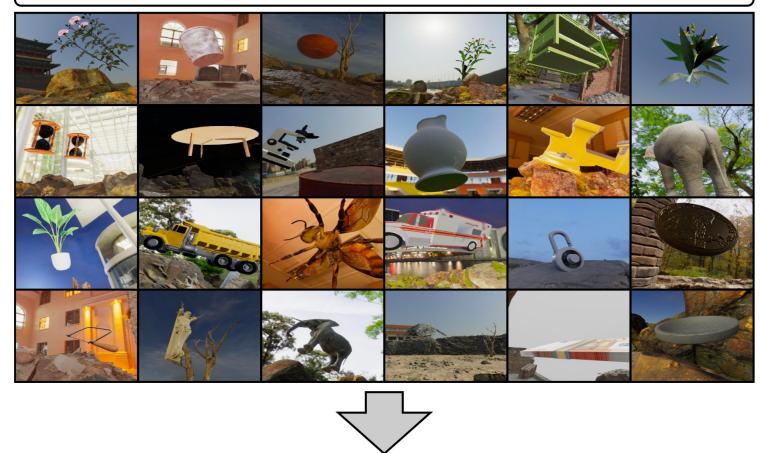


 Reality Gap: Many works on Sim2Real domain adaptation

New Problem:

Synthetic Data
Pretraining and
Transfer to Diverse
Downstream Tasks

Synthetic Data Pre-training



Downstream Tasks from Various Domains (Real Images)

Sketch

SVHN

ChestX

Flowers

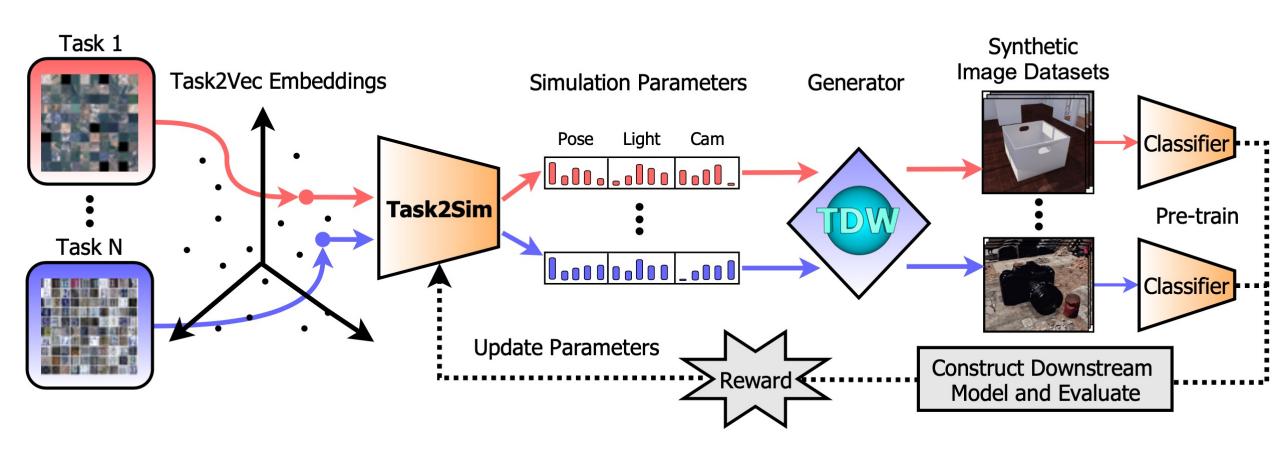
EuroSAT

Observation: Different simulation parameters have different effects on different downstream tasks

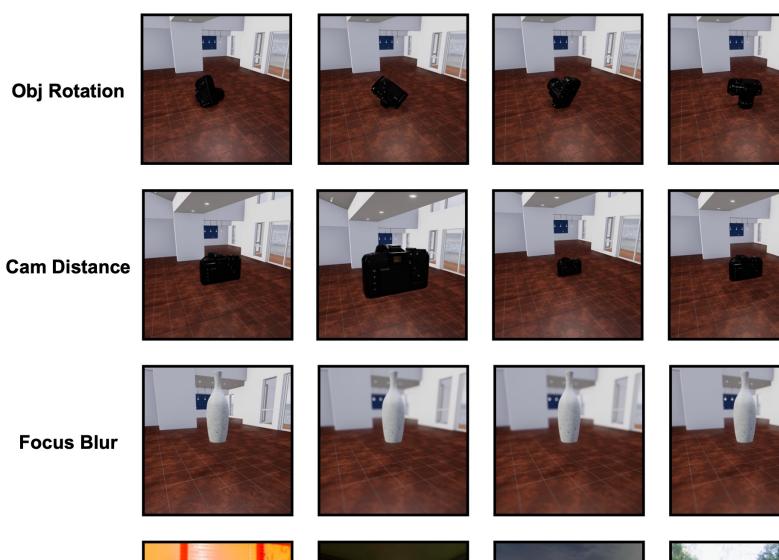
Resnet-50, linear probing

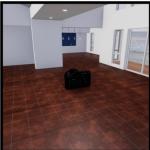
Pretraining Data	Downstream Accuracy				
Variations	EuroSAT	SVHN	Sketch	DTD	
Pose	87.01	28.49	37.89	37.39	
+Lighting	88.57	32.36	38.81	40.32	
+Blur	90.20	35.58	35.53	37.66	
+Materials	84.54	44.84	30.81	38.51	
+Background	80.44	29.93	14.60	32.39	

Proposed Approach: Task2Sim

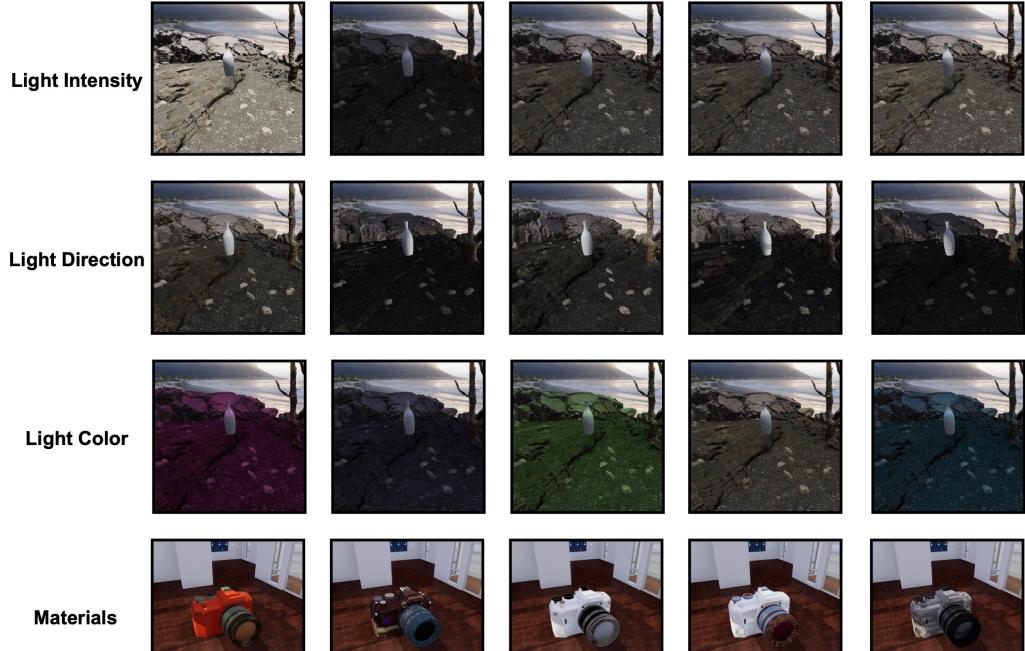


Obj Rotation





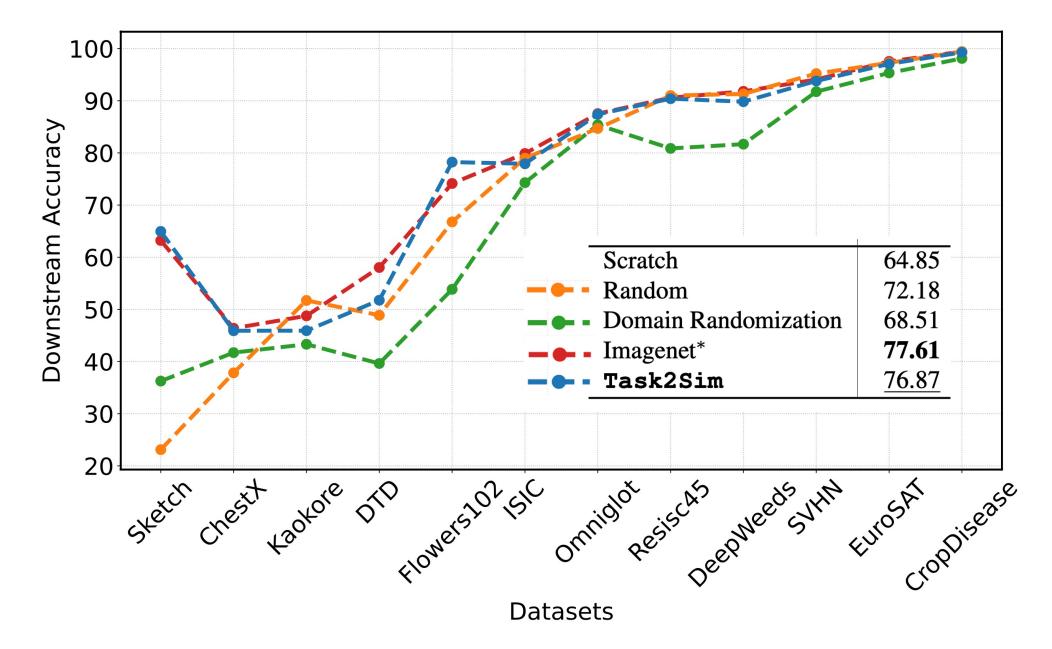
Focus Blur



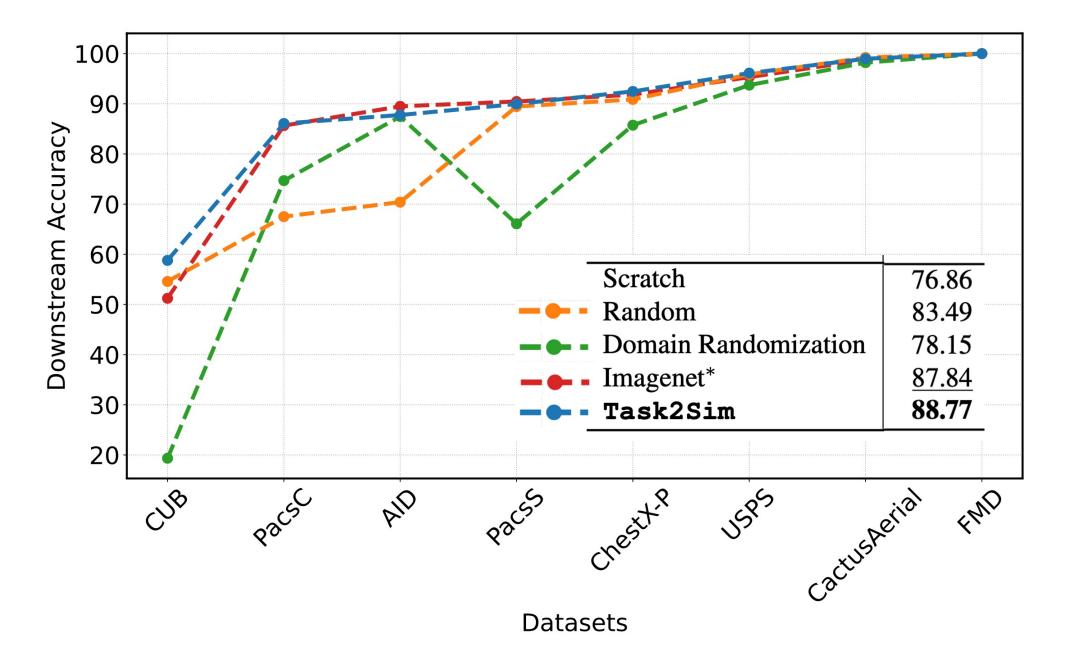
Experiments: 20 downstream tasks from various domains

Category	Dataset	Train Size	Test Size	Classes
Natural	CropDisease [39]	43456	10849	38
	Flowers [42]	1020	6149	102
	DeepWeeds [44]	12252	5257	9
	CUB [65]	5994	5794	200
Satellite	EuroSAT [18]	18900	8100	10
	Resisc45 [4]	22005	9495	45
	AID [75]	6993	3007	30
	CactusAerial [34]	17500	4000	2
Symbolic	Omniglot [30]	9226	3954	1623
	SVHN [40]	73257	26032	10
	USPS [21]	7291	2007	10
Medical	ISIC [7]	7007	3008	7
	ChestX [67]	18090	7758	7
	ChestXPneumonia [25]	5216	624	2
Illustrative	Kaokore [60]	6568	821	8
	Sketch [66]	35000	15889	1000
	PACS-C [32]	2107	237	7
	PACS-S [32]	3531	398	7
Texture	DTD [6]	3760	1880	47
	FMD [81]	1400	600	10

Fine-tuning - Seen Tasks (237 classes/100k images)



Fine-tuning - Unseen Tasks (237 classes/100k images)

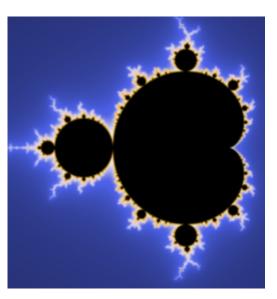


Next Steps

Label = Cat

Label = ?

 $x_{k+1} = x_k^2 - y_k^2 + \operatorname{Re} c$ $y_{k+1} = 2x_k y_k + \operatorname{Im} c$



Pretraining from Images with Labels

2012

Pretraining from Images without Labels

Today

Pretraining from Synthetic Images Pretraining from Fractals and Noise Processes

Multimodal Learning from Synthetic Data

Q/ How many chairs are in the room? A/ 6

Q/ What color is the bed cover? A/ white

Q/Is there a dog in the kitchen? A/ no

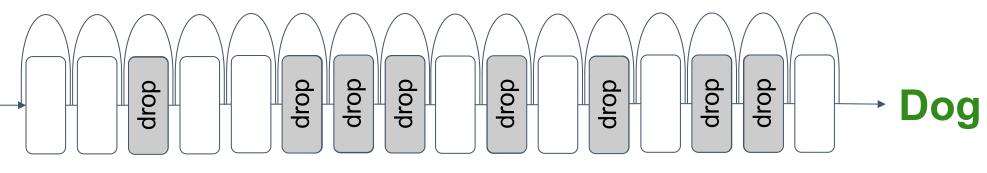
Q/ How many chairs are in the picture? A/ 2

Q/ What color is the fire hydrant? A/ yellow

Q/Is there a teddy bear on top of the table? A/yes

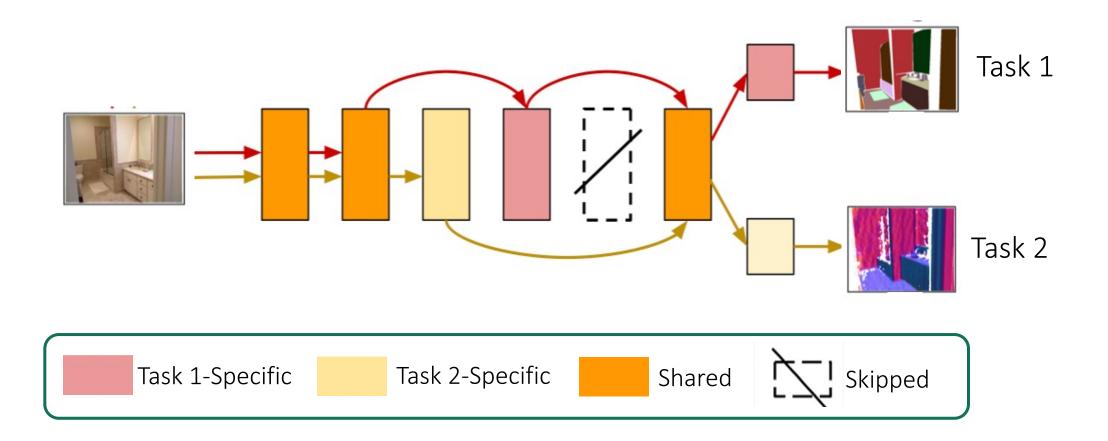
Summary

BlockDrop: Instance-specific Computational Pathways



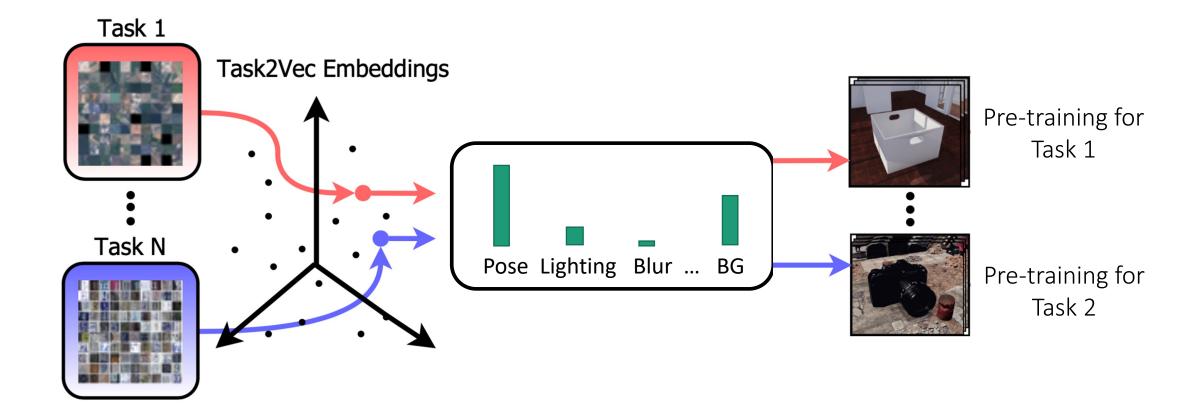
Summary

Adashare: Task-specific Computational Pathways



Summary

Task2Sim: Task-specific Data Simulation Pathways



References

- S. Mishra, R. Panda, C. Phoo, L. Karlinsky, K. Saenko, V. Saligrama, and R. Feris. Task2Sim: Towards Effective Pre-training and Transfer from Synthetic Data. Arxiv 2021 (soon)
- X. Sun, R. Panda, R. Feris, and K. Saenko. AdaShare: Learning What to Share for Efficient Deep Multi-Task Learning. NeurIPS 2020
- Z. Wu*, T. Nagarajan*, A. Kumar, S. Rennie, L. Davis, K. Grauman, and R. Feris. BlockDrop: Dynamic Inference Paths in Residual Networks. CVPR 2018 (* equal contribution)

See more at http://rogerioferis.org