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Feed-Forward Convolutional Neural Networks

= Single path, where the exact same set of features are extracted for all inputs

Adapted from Veit et al



Feed-Forward Convolutional Neural Networks

What happens when we drop a layer at test time?

Adapted from Veit et al



What happens when we drop a layer at test time?
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Adapted from Veit et al



What happens if we delete a layer at test time?
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Adapted from Veit et al



Why does this happen?

B0

VGG ResNet

Adapted from Veit et al



Why does this happen?

The unraveled view is
equivalent and
showcases the many
paths in ResNet.

VGG

Adapted from Veit et al



Deletion of a Layer

Adapted from Veit et al



Deletion of a Layer
Only half of the paths are affected

/i
All paths are affected
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VGG ResNet

Adapted from Veit et al



Performance varies smoothly when deleting several layers
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Can we delete a sequence of layers
without performance drop?

Important for applications where fast inference is essential




Can we delete a sequence of layers
without performance drop?

In the experiment of [Veit et al, 2016]:

" Layers were dropped randomly
= Same layers were dropped for all images



BlockDrop: Dynamic Inference Paths in Residual Networks
CVPR 2018
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BlockDrop: Dynamic Inference Paths in Residual Networks
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Do we really need to run 100+ layers / residual blocks of a neural
network (which is expensive) if we have an “easy” input image?

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks
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“Dropping some blocks during testing
~ doesn’t hurt performance much”

(Veit et al., NIPS 16)

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

How to determine which blocks to drop depending on the input image?
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

Our Idea: BlockDrop

Predict which blocks to drop conditioned on the input
Image, in one shot, without compromising accuracy

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

Policy Network Training using Policy Gradients
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BlockDrop: Dynamic Inference Paths in Residual Networks

= Reward function takes into account both accuracy and block usage
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks
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[Wu & Nagarajan et al, CVPR 2018]




BlockDrop: Dynamic Inference Paths in Residual Networks
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Results on ImageNet:

20% - 36% computational
savings (FLOPs)

Complementary to other
model compression
techniques

[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

= Different policies capture different visual patterns
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[Wu & Nagarajan et al, CVPR 2018]



BlockDrop: Dynamic Inference Paths in Residual Networks

Goldfish - easy (23 blocks) vs. hard (29 blocks) | Artichoke - easy (18 blocks) vs. hard (28 blocks)

________________________________________________________________________________________________________________

Block usage in neural networks agrees
with our perception of difficulty

[Wu & Nagarajan et al, CVPR 2018]



Adashare: Learning What To Share For Efficient Deep
Multi-Task Learning

NeurlPS 2020
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Hard Parameter Sharing

" Hand-designed architectures composed of base layers that are shared across tasks and
specialized branches that learn task-specific features.

Task1l Task2  Task3 S

Task-Specific
L ~ ® Performance depends on
ayers | |
g “where to branch” in the

network [Misra et al, 2016]

|

= The space of possible
branching architectures is
combinatorially large |

o Shared
Layers
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Soft Parameter Sharing

= Network column for each task and a mechanism for feature sharing between columns.




Problem

Can we determine which layers in the network should be shared

across which tasks and which layers should be task-specific to |
achieve the best accuracy/memory footprint trade-off for scalable
and efficient multi-task learning? |



Proposed Approach: AdaShare

= Single network that supports separate execution paths for different tasks




BlockDrop: Per-instance routing; Accuracy + Sparsity reward
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AdaShare: Learning what to Share in Multi-Task Learning

Task-Specific Policy
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AdaShare: Learning what to Share in Multi-Task Learning
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AdaShare: Experimental Results

= CityScapes [2 tasks]. AdaShare achieves the best performance on 5 out of 7
metrics using less than 1/2 parameters of most baselines.

Y TP— Semantic Seg. Depth Prediction

Model | mloU'4 Pixel Error] 0, within 1
Acct | Abs Rel 125 125 1.25°
Single-Task 2 40.2 74.7 | 0.017 033 703 863 933
Multi-Task 1 37.7 73.8 | 0.018 034 724 883 942
Cross-Stitch 2 40.3 743 | 0.015 030 742 893 949
Sluice 2 39.8 742 | 0016 031 730 888 94.6
NDDR-CNN 2.07 41.5 742 | 0.017 031 740 89.3 948
MTAN 241 40.8 743 | 0.015 032 751 893 946
AdaShare 1 41.5 749 | 0.016 033 755 898 949
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AdaShare: Experimental Results

= NYU v2 [3 tasks]. AdaShare achieves the best performance on 10 out of 12

metrics using less than 1/3 parameters of most baselines.

Semantic Seg. Surface Normal Prediction Depth Prediction

Model # Params | mloU 1 Pixel Acc 1 Error | 0, within 1 Error | 0, within 1
Mean Median 11.25° 22.5° 30° | Abs Rel 125 1.25% 1.25°
Single-Task 3 210 38.9 LI 15:2 34.9 3.3 857 | 062 025 519 858 957
Multi-Task 1 24.1 572 16.6 13.4 42.5 732 84.6 | 058 023 624 882 96.5
Cross-Stitch 3 254 57.6 1.7:2 14.0 41.4 705 829|058 023 614 3884 955
Sluice 3 23.8 56.9 17:2 14.4 38.9 71.8 839 | 058 024 619 881 963
NDDR-CNN 315 21.6 339 171 14.5 37.4 73.7 85.6 | 0.66 0.26 5577 8377 948
MTAN 3.11 26.0 57.2 16.6 13.0 43.7 733 844 | 057 025 627 877 959
AdaShare 1 30.2 62.4 16.6 12.9 45.0 717 83.0 | 0.55 0.20 645 905 978
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AdaShare: Experimental Results

* Tiny-Taskonomy [5 Tasks]. AdaShare outperforms the baselines on 3 out of 5 tasks
using less than 1/5 parameters of most baselines.

Models #Params | | Segl SN1T Depth| Keypoint| Edge |
Single-Task 5 0.575 0.707  0.022 0.197 0.212
Multi-Task 1 0.587 0.702  0.024 0.194 0.201
Cross-Stitch 5 0.560 0.684  0.022 0.202 0.219
Sluice 5 0.610 0.702  0.023 0.192 0.198
NDDR-CNN 541 0.539 0.705  0.024 0.194 0.206
MTAN 451 0.637 0.702  0.023 0.193 0.203
AdaShare 1 0.566 0.707  0.025 0.192 0.193
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Task2Sim: Towards Effective Pre-training and
Transfer from Synthetic Data

Arxiv 2021
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Status Quo: Pre-train Models with Massive Datasets
(Labeled/Unlabeled/Weakly-Labeled)




Larger Pre-training = Better Results

Vision Transformer (ViT) 1 Transformer Encoder

s | Attention |
# Extra leamab]e_ 1
[class] embedding [ Linear Projection of Flattened Patches ] |
EE I N O O
Em —NENENEREEE |
ey | Embedded
Patches

90.45% Top-1 Accuracy in ImageNet

Xiaohua Zhai et al. “Scaling Vision Transformers”, Arxiv 2021



Issues with Large-scale Pre-training

Expensive Curation Private Access




Face simulation

Promising way to address
these issues: synthetic data

Embodied Perception

Il




By 2030, Synthetic Data Will Completely Overshadow Real Data in Al Models

1

« Artificially Generated Data
» Generated From Simple

Future Al Rules, Statistical Modelling,
Data Used Simulation and Other
for Al | | Today’s Al Techniques

« Obtained From Direct
Measurements

« Constrained by Cost, Logistics,
Privacy Reasons

2020 . 2030
Time

Source: Gartner
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= Reality Gap:
Many works on
Sim2Real domain
adaptation
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New Problem:

= Synthetic Data

Pretraining and
Transfer to Diverse Downstream Tasks from Various Domains (Real Images)

Downstream Tasks
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Observation: Different simulation parameters have different
effects on different downstream tasks

Resnet-50, linear probing

Downstream Accuracy

Pretraining Data
EuroSAT SVHN Sketch DTD

Variations
Pose 87.01 28.49 37.89  37.39
+Lighting 88.57 32.36 38.81 40.32
+Blur 90.20 35.58 3553 37.66
+Materials 84.54 44.84 30.81 38.51
+Background 80.44 29.93 14.60 32.39




Proposed Approach: Task2Sim

| Task2Vec Embeddings

Simulation Parameters

Pose Light Cam
Dolool.olB0(0etl |—>
Task2Sim e
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Generator

Synthetic
Image Datasets

'p y |

v

Pre-train

Construct Downstream
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Obj Rotation

Cam Distance

Focus Blur

Background




Light Intensity

Light Direction

Light Color

Materials




Experiments:
20 downstream tasks
from various domains

Category Dataset Train Size Test Size Classes
CropDisease [ | 43456 10849 38

Natural Flowers [ | 1020 6149 102
DeepWeeds [ | 12252 5257 9

CUB|[ | 5994 5794 200

Satellite EuroSAT [ | 18900 8100 10
Resisc45 [ ] 22005 9495 45

AID[ ] 6993 3007 30
CactusAerial [ | 17500 4000 2

, Omniglot [ ] 9226 3954 1623
Symbolic | ¢\ 40] 73257 26032 10
USPS [ ] 7291 2007 10

. ISIC [ | 7007 3008 7
Medical | ~pegex [07] 18090 7758 7
ChestXPneumonia [ 5216 624 2

Ilustrative Kaokore [ | 6568 821 8
USHAUVE | Sketch [ ] 35000 15889 1000
PACS-C[ ] 2107 237 7

PACS-S [ | 3531 398 7

Texture DTD | | 3760 1880 47
S FMD[ | 1400 600 10




Fine—tuning - Seen Tasks (237 classes/100k images)
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Fine-tuning - Unseen Tasks (237 classes/100k images)
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Next Steps



Lighting = x, Xkt = X Vi +Rec
Label = Cat r Pose =y, ... Vel = 2X; Vi +Imc

Pretraining from Pretraining Pretraining from Pretraining from
Images with from Images Synthetic Images Fractals and Noise
Labels without Labels Processes

| | p

2012 Today



Multimodal Learning from Synthetic Data
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Q/ How i;nany c:'—;iirs arein Q/ What color is the bed Q/ Is there a dog in the
the room? A/ 6 cover? A/ white kitchen? A/ no

Q/ How many chairs are in ‘ Q/ What color is the fire Q/ Is there a teddy bear on
the picture? A/ 2 hydrant? A/ yellow top of the table? A/ yes



summary

BlockDrop: Instance-specific Computational Pathways
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summary

Adashare: Task-specific Computational Pathways




summary

Task2Sim: Task-specific Data Simulation Pathways

Task 1

Task2Vec Embeddings

Pre-training for

\_ Pose Lighting Blur ...

BG

Task 1

R Pre-training for

Task 2
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See more at http://rogerioferis.org



http://rogerioferis.org/

