
Learning More from Less: 
Weak Supervision and Beyond

Rogerio Schmidt Feris
Principal Research Scientist and Manager
IBM Research & MIT-IBM Watson AI Lab



The battle against the long tail
§ Training accurate deep neural network models usually requires lots of 

labeled data

o Data collection and annotation is expensive, tedious, time-consuming. 
o Crowdsourcing may be infeasible for proprietary data. 
o For some tasks, data may not be available at all (long tail distribution)



This talk

§Weak supervised learning for fashion search

§ Learning with less labels beyond weak supervision



Street2Shop 

Slide credit: Tamara Berg

Hadi Kiapour, M., Han, X., Lazebnik, S., Berg, A. C., & Berg, T. L. Where to buy it: Matching street clothing photos in online 
shops. ICCV 2015



Input: User Photo Retrieved Images from Online Shopping Stores

Street2Shop Clothing Retrieval

[Liu et al, CVPR 2012] [Kiapour et al, ICCV 2015] [Huang et al, ICCV 2015]



Problem: Domain Discrepancy
Shopping Catalog User Photo

DARN 

Proposed Approach:
Dual Attribute-Aware Ranking Network
(DARN)

DARN 



Weakly labeled data from shopping websites 
§ 9,000 image pairs mined from customer review websites (exact same clothing)  

§ Noisy attribute labels mined from online shopping stores (9 classes, 179 values)



§ Two sub-networks to model each domain (shopping and user images)
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§ Two sub-networks to model each domain (shopping and user images)
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§ Triplet Ranking loss function connecting the two sub-networks 
§ (visual similarity constraint)
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§ Semantic embedding: simultaneous attribute learning and retrieval
§ FC features are transmitted to multiple branches

Dual Attribute-Aware Ranking Network (DARN)
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§ Features from conv layers for encoding more localized information
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§ Test time: Cross-domain Clothing Retrieval
§ For each image in the gallery, compute features and store them in a database 
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§ Test time: Cross-domain Clothing Retrieval
§ For each image in the gallery, compute features and store them in a database 
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§ Test time: Cross-domain Clothing Retrieval
§ Given a query image, compute features and rank-order the gallery based on Euclidean distance 

Dual Attribute-Aware Ranking Network (DARN)
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Top-k retrieval accuracy on 200,000 retrieval gallery.
The number in the parentheses is the top-20 retrieval accuracy.

Our method (DARN) achieves the best results compared to other state-of-the-art approaches.

Experimental Results





Attributes as a weak supervisory signal 

AttrNet Model

§ Mining attributes from text surrounding the images
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Training [Guo & Wu et al, NeurIPS 2018] :

§ Reinforcement learning
(reward: rank of the target image)

§ User simulator



Training Dialog Manager with User Simulator
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Training the network
• How to obtain training data? Expensive and slow to collect dialog data from real users.
• Training strategy? Optimization objective is the ranking of the ground truth image, which is 

non-differentiable.

§ Relative captioner: surrogate for real users

§ Automatically generates sentences describing the visual differences between 
target and reference images

§ New task and new dataset!

“The one I want has 
an open back design 
with suede texture. “
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Fashion IQ Dataset
https://www.spacewu.com/posts/fashion-iq/

§ Images sourced from Amazon, including three classes, Dresses, Tops & Tees, and Shirts 
(~60K relative captions)

https://www.spacewu.com/posts/fashion-iq/


Results – Attribute-aware User Simulator

§ Attribute-aware methods outperform image-only baselines
§ Attention mechanism can better utilize the additional attribute information

(D) Dresses, (S) Shirts, (t) Tops&Tees



Results – Interactive Image Retrieval

§ Attribute information and relative expressions jointly lead to better retrieval results
§ More advanced techniques for composing side information, relative feedback and image 

features could lead to further performance gains.



This talk

§Weak supervised learning for fashion search

§ Learning with less labels beyond weak supervision



IBM Research AI – Learning with Less Labels for Vision

Vision Tasks

Transfer Learning

Data Augmentation

Visual Learning

Delta (Δ)-encoder Label Set Operations 
(LaSO)

Representative-based 
metric learning (RepMet) Learning with Semantics

Learning to Transfer SpotTune



Transfer Learning

Model Selection
[Dube et al, Deep Vision Workshop 2019]

SpotTune [Guo et al, CVPR 2019]



Sample Synthesis for Few-Shot Learning
Delta-Encoder 
[Schwartz & Karlinsky et al, NeurIPS 2018]

LaSO
[Alfassy & Karlinsky et al, CVPR 2019]



Few-shot Learning
RepMet
[Karlinsky et al, CVPR 2019]

Learning with Semantics
[Schwartz & Karlinsky et al, Language & Vision Workshop, 2019]



Summary
§ Takeaway message: Noisy visual attribute labels mined from the web are 

useful as privileged information during training to improve image search:
§ Street2Shop fashion retrieval [Huang et al, ICCV 2015]
§ Dialog-based interactive fashion retrieval [Guo & Wu et al, NeurIPS 2018] [Guo & Wu et al, 2019]

§ Check out our recent work on learning with less labels @CVPR
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